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Chapter 1

Introduction

1.1 Outline

Control of air contaminants is a crucial factor in the safety considerations

of crewed space flight. Indoor air quality needs to be closely monitored during long

range missions such as a Mars mission, and also on large complex space structures

such as the International Space Station. This work mainly pertains to the detection

and simulation of air contaminants in the space station, though much of the work is

easily extended to buildings, and issues of ventilation systems.

Here we propose a method with which to track the presence of contaminants

using an accurate physical model, and also develop a robust procedure that would

raise alarms when certain tolerance levels are exceeded. A part of this research

concerns the modeling of air flow inside a spacecraft, and the consequent dispersal

pattern of contaminants. Our objective is to also monitor the contaminants on-line,

so we develop a state estimation procedure that makes use of the measurements

from a sensor system and determines an optimal estimate of the contamination in

the system as a function of time and space. The real-time optimal estimates in turn

are used to detect faults in the system and also offer diagnoses as to their sources.

This work is concerned with the monitoring of air contaminants aboard

future generation spacecraft and seeks to satisfy NASA's requirements as outlined

in their Strategic Plan document (Technology Development Requirements, 1996).
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Mostof this workwasundertakento satisfytt_erequirementsof NASA'sAdvanced

EnvironmentalMonitoringandControlProgram,with a view to developingan in-

telligentmonitoringsystemforSpaceStationmissions.ThecurrentNASAStrategic

Plan hasasoneof its statedgoals"to explore,use,andenablethe developmentof

spacefor humanenterprise".Thegoalis to beaccomplishedin threetime periods

• 1996-2002:Establishpermanentpresencein lowEarthorbit by constructing

and usingthe ISS,

* 2003-2009: Operate the ISS cost effectively, with a subgoal to "achieve ad-

vanced life support systems to close spacecraft air/water loops," and,

• 2010-2020 and beyond: Conduct international human missions to planetary

bodies in our solar system.

Even though this work is targeted at future generation spacecraft and space sta-

tions, many of the specifications used in this work pertain to the International Space

Station, scheduled for launch in late 1998. The International Space Station is a col-

laborative effort with participation by the gover_lments of the United States, Canada,

Europe, Japan, and Russia. The configuration will include a Hab and a Lab Element,

two Nodes, and two International modules (the European Space Agency Attached

Pressurized Module and the Japanese Experin_ental Module). Other relevant mis-

sions where this work applies include the manned missions to Mars, the Mars Short

Visit, the Mars Human -Tended Outpost, and _he Mars Permanent Outpost, where

astronauts are expected to spend up to 600 da) s, and where the luxury of returning

to earth for a cleanup in the case of a contaminaat leak does not exist. Contaminants

that are to be monitored include carbon dioxide, carbon monoxide, and volatile or-

ganics. According to NASA, primary chemicais of concern are nitrogen tetroxide,

monomethyl hydrazine, ammonia, and Halon 1301. Studies aboard the Mir Sta-

tion(Cole et al., 1996) have shown that about 45 compounds (32 target compounds

and 13 non-target compounds) were consistently detected in air samples that were
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collectedduring the missions,thoughnoneof the compoundswerepresentat toxic

levels. Still, contaminantmonitoringremainsan important focusareain ensuring

the safetyof humansin space.

Major sourcesof contaminantsin the spacestation includeoff-gassingof

cabinmaterialsandhardware,useofutility chemicals,andmetabolicwasteproducts

of crewmembers.Minor sourcesof contaminantsincludeelectricalequipment,mi-

crobialmetabolism,leakageduringexperimentsusingchemicals,leakagefrom envi-

ronmentalor flight controlsystems,volatilefoodcomponents,andreactionproducts

from theenvironmentalcontrolandlife supportsystems.Table1.1lists someof the

substancesbeingmonitoredandtheir sourcesaboardthespacecraft.

The NationalResearchCouncil (NationalResearchCouncil, 1984),in its

variousstudies,hasprescribed(NationalAcademyof Sciences,1981)spacecraftmax-

imum allowableconcentrations(SMACs),whicharenot to be exceededunderany

circumstances(NationalResearchCouncil, 1996).Theseconcentrationsare based

onstudiesthat link contaminantconcentrationsto the impairmentof normalhuman

activities.

The fault detectionanddiagnosissystemis a synthesisof differentmath-

ematicalprocedures,whicharefunctionallyindependent,but whichcometogether

to provideaneffectivestructurethat servesthe purposeof monitoringthe presence

of airbornecontaminants.

1.2 Space Station Environmental Control and Life Support System

In this section,the generallayoutof the InternationalSpaceStation,and

someof the componentsof theAir revitalizationsystemaredescribed.

Futuremissions,especiallythe longrangemissions,will increasinglyhave

to be materiallyclosedsystems,sincethe costof carryingspareoxygenwouldbe

prohibitive.Futuremissionswill alsoinvolvegrowingfood,andthecomplexityof the

revitalizationsystemwill increaseto accountfor manymorepossiblecontaminants.



4

Table1.1:Somecommonlymonitoredsubstancesandtheirsourcesaboardspacecraft
(NationalResearchCouncil,1992)
Monitoredsubstance Spacecraftsource
Oxygen
Carbondioxide
Carbonmonoxide
Nitrogen
Halon
1-Butanol

Diacetonealcohol

Requiredcomponentin cabinair
Requiredcomponentin cabinair
Productof incompletecombustion
Inert componentin air
Diffusionfrom theShuttleto theStation
Off-gassingfromflight hardware
andfrom humanmetabolism
Off-gassingfrom paint that is not totally cured
andfrom hardwareotLgassing

Ethanol
Ethyl benzene
EthyleneGlycol
Glutaraldehyde
Trichloroethylene
Xylene

Cleaner/disinfectant use

Off-gassing from nonmetallic materials

antifreeze and off-gassing
Cell-Tissue fixatives

Off-gassing

Off-gassing
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In addition, NASA's Advancedtechnologyrequirementsoutlinescertain features

that must be includedin future life supportsystems.Someof thosefeaturesthat

this workattemptsto demonstrateinclude:

• Ambientair in the cabinmustbemonitoredat selectedlocations,every15

seconds,for thespecies02, CO2,and CO.

• Toxicityof air mustbereportedin termsof specificmajor andtracespecies

concentrationsandtheir ratesof rise.

• A computermodelshallbeavailableto predictthebehaviorandthecontami-

nationremovalcapabilitiesfor contaminantsthat couldsuddenlybereleased

into the atmosphere.Themodelmustbeexperimentallyverifiedandbeca-

pableof spatial resolutionto the moduleleveland temporalresolutionto

0.5hour.

• major air componentsshallbemonitoredona near-continuousbasisin the

habitat atmosphere

TheEnvironmentalControlandLife Supportsystemis dividedinto seven

majorsubsystems,thetemperatureandhumiditycontrol(THC),atmospherecontrol

and supply(ACS),atmosphererevitalization(AR), fire detectionand suppression

(FRS),waterrecoveryandmanagement(WRM), wastemanagement(WM), andthe

VacuumSystem(VS).

Their functionsinclude(Reuter,1998):

• AtmosphereRevitalization:

• Controlanddisposalof carbondioxide

• Controlof airbornetracecontaminants

• Oxygen(02) supplyvia generation
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• Atmosphericmonitoringof prim:_ry constituents, including 02, CO2,

nitrogen (N2), hydrogen (H2), me:thane (CH4), and water vapor

• Airborne particulate and microbial control

• Temperature and Humidity Control

• Cabin air temperature and humidity control

• Equipment air cooling

• Inter- and intra-module ventilation for crew comfort and station level

control of 02, CO2, and trace contaminants

• Atmosphere Control and Supply

, Total pressure and 02 partial pressure control

• Total pressure monitoring and monitoring of loss of pressure

• Stored gaseous N2 and 02 supply and replenishment

• Fire Detection and Suppression

• Smoke detection

• Fire extinguishment

• Waste Recovery and Management

• Potable and hygienic water suppl:

• Waste water and urine water collection, recovery, and disposal

• Waste Management:

• Urine/fecal collection and recover:"

• Vacuum System

, Vacuum venting and maintenance for payload support



Someof theair andwaterquality requirementswhichareto bemaintained

in the ISSareshownin Table1.2.

A testof the Life SupportSystemwascarriedout in the JohnsonSpace

Center'sIntegratedLife SupportSystemTestfacility, in whicha four-membercrew

spentthirty continuousdaysin a closedchamber.All test objectiveswereaccom-

plished(Lunar-Mars,1997),andnoSMACswereviolated.

1.3 Previous work

Space environment monitoring has been in place for as long as there have

been crewed missions, with the levels of sophistication changing with the complexity

and duration of the missions, and along with the developments in computational

and sensor technologies. Two computer models that represent the present genera-

tion of Space Environment monitoring models are the Trace Contaminant Control

Simulation (TCCS) (Perry, 1993) and the Computer Aided System Engineering and

Analysis (CASE/A) (CASE/A, 1990) modeling package. Both the packages model

the space station modules as well-stirred tanks, where each module is represented by

its average concentration. The CASE/A package is more flexible and user-friendly,

and provides a means for simulation of a number of interconnected well-stirred tanks.

Both the packages suffer from the limitation that stagnation points within the cabin,

and non-uniform forced convection patterns cannot be represented within the model.

A study of the inhalation risks aboard spacecraft (Todd et al., 1994), where the

Space Station was modeled as a series of well stirred chemical reactors, improved

on the lumped analysis by providing more information about spatial variations of

contaminants aboard spacecraft. A comprehensive stud), of the sensor system was

undertaken (Smith, 1996), which used a lumped system of modeling the transport

in order to optimize the sensor selection process.

The first significant shift away from lumped analysis in contaminant dis-

persal modeling was in the work of Skliar and Ramirez (Skliar and Ramirez, 1997a),
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where each cabin module was represented using a two dimensional mesh and a solu-

tion to the reaction-diffusion equation was obtained using a finite difference scheme.

This approach has the advantage of providing information in two spatial directions.

Blackwell (Blackwell, 1998) has proposed a a fault detection and location

procedure based on physical laws and modeling, analysis, and simulation. His work

is based on optimal control theory, and uses analytical redundancy for the detection

part, but the work does not specifically address the physics of the problem, and

merely lays out the structure for the procedure.

1.4 Salient characteristics of this research

This research seeks to build on the two-dimensional model developed by

Skliar (1996), and extend that work to three dimensions. It also seeks to use a more

rigorous computational fluid dynamics solution to the flow equations that what has

been used hitherto for this purpose, one that vastly reduces the modeling error. A

fault detection algorithm is implemented with the ability to distinguish between pro-

cess and sensor faults. The fault detection algorithm uses the concept of analytical

redundancy to detect the faults.

The final part of the research focuses on diagnosing the fault in the system,

primarily that of an unknown contaminant source in the cabin. This is an inverse

problem that is ill-posed and has no unique solution, so the attempt here will be

to obtain a satisfactory solution to a required degree of accuracy. To this end, an

Extended Implicit Kalman Filter is developed, which is an extension of the Implicit

Kalman Filter suitable for joint state and parameter estimation. The filter essentially

maintains the same structure as the original filter, and many of the algorithms

remain the same as before. The filter requires an initial guess for the location and

capacity of the unknown source, for which purpose we use pre-calculated sensitivity

matrices that contain information about the local variation in concentration for

perturbations throughout the cabin. The combination of these two techniques makes
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for anaccurateandefficientalgorithmfor obtainingasolutionto the inverseproblem.

The proposedprocedurefor air contaminantmonitoringis shownin Fig.

1.1. The sameprocedurecan be appliedfor a varietyof substances,,and some

algorithmscanevenbeusedto monitorair pressureand someotherparameters.

1.5 Outline of Report

This report is organized as follows. Chapter 2 discusses the flow modeling

work that we performed in order to simulate the air flow aboard the International

Space Station, and Chapter 3 describes the mathematical modeling of the contam-

inant dispersal process along with its numerical solution, and sample profiles that

were obtained. The State estimation procedure is discussed in Chapter 4, and the

use of the State Estimation Procedure for fault detection is described in Chapter 5.

Chapter 6 contains the discussion of the fault diagnosis algorithms that are proposed,

and finally Chapter 7 presents the conclusions and the significant contributions of

this research.



11

( Sensors

Model solution )

Implicit Kalman Filter

State Estimate

( Fault Detection )

No

Fault Diagnosis
(Sensitivity Analysis) _

Mitigating actions _)

ID

J_

V

Figure 1.1: Air contaminant monitoring system



Chapter 2

Indoor air flow

2.1 Literature review

Air flows inside enclosures have been a subject of active interest within the

building systems community. Computational fluid dynamics (CFD) has been used

for predicting room air movement since the s,_venties. There even exists a public

domain software (Kurabuchi et al., 1990; Said et al., 1995) called EXACT3, which

is a three dimensional finite difference computer program for simulating buoyant

turbulent airflow within buildings. In recent years, much effort has been made to

enhance CFD as a reliable tool for the evaluation of air flows. CFD has been used

in studying clean room air-flows (Kuehn, 19_8; Yamamoto et al., 1988) because

of the need to keep the clean room free of pec'ticles and particulates, and air flow

becomes a critical parameter in such cases. Space application in the context of

contaminant dispersion is very similar in scope to clean room applications, though

there is little work reported in the literature that pertains to space applications.

Recently (Tam, 1998), an interesting study eva uated the application of CFD in the

software design of environmental control and life support systems, and found that

atmospheric conditions within the Space Statio 1 could be adequately modeled using

the Resource Utilization Planning and System VIodeling (RUPSM) scheme.

Most of the work in the area has remained computational, though a few

validating experimental results also exist in the literature. The International Energy
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Agency,thougha subsidiaryresearchgroup,Annex20,measuredvelocities,temper-

atures,andturbulencevelocityscalesin full scalerooms(Whittle andClancy,1991).

Canadianresearchers(Barberet al., 1982)did studiesonthecorrelationbetweenthe

velocityof the inletjet andthefloor velocity,andproposedajet momentumnumber

that wouldmeasurethe energycontainedin thediffuserjet relativeto the roomair

volume.In this work,weuseCFD to provideuswith the informationregardingthe

flowwhichis thenusedasan input to the mathematicalmodelfor the diffusionand

for the procedurethat estimatesthe current concentrationof contaminantsin the

cabin.Thisdevelopmentmarksan importantstepin ourestimationproceduresince

theaccuracyof theprocedureis largelydependenton theaccuracyof theflowmodel

sincemostof the transportis occurringthroughconvectivediffusion.

A detailedknowledgeof the flow field is requiredin order to ensurethat

the ventilationsystemis performingadequately,and to provideinformationabout

localvariationsin the concentrationprofileof thecontaminants.Anotheradvantage

in usingCFD isthat it enablesthe calculationof quantitiesliketurbulenceintensity

whichhavedirecteffectson the comfortlevelof peopleinsidethe cabin. CFD is an

inexpensivetool for suchstudiesand hasbeenusedto study the effectof different

ventilation techniques(Gan,1995)on thermalcomfortin buildings. Researchhas

shownthat lowerturbulenceintensitiescontributeto highercomfortlevels(Zhang

et al., 1992).

2.2 Air Flow Modeling

We assumethat the air flow is steadyand incompressible,and solvethe

three-dimensionalNavier-Stokesequationsfor the appropriateboundaryandinitial

conditions.Air underatmosphericpressureand for the low velocityflowsthat are

characteristicof roomair flowsis expectedto be incompressible,andwe invokethe

steadystateassumptionbecausesolvingfor transientcabinflowsis computationally

too intensiveto be usedin a real-timeoperation.Wetried simulatingthe air flow
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for both 2-Dand 3-Dcases.Earlierworkuseda two-dimensionalflow field (Skliar

andRamirez,1997a)asaninput to their stateestimationprocedure.In a significant

developmentin this work,weconsidermodelingthe three-dimensionalgeometryof

the spacestation module. The 2-D casehas the advantageof requiringfar less

computationaltime, whereasit suffersfrom a lackof informationabout the third

dimension.

Air flowsinsideenclosuresareusuallyturbulent,random,andhighlyrecir-

culating (Zhanget al., 1992).In this work,wesolvetheequationsfor both laminar

and turbulent cases.The geometrychosenherefollowsexperimentaltest usedin

previousstudies(Sonand Barker,1997)and accuratelyrepresentsthe US Space

StationLab module.Weusedthis geometryfor oursimulationsin orderto havean

experimentalset of resultsto validateour simulations.The simulatedcabin (Fig.

2.1) is 6 m long, 2 in wide, and2 m high (approximately.20' X 7' X 7'). There

are two inlets and two outlets for the air. The Temperature and Humidity Control

(THC) is the primary air supply which supplies regulated air into the cabin and

is one of the primary subsystems in the Environmental Control and Life Support

Systems for the Space Station (see Son and Barker, 1993). The Intermodule ven-

tilation (IMV) airflow assemblies are used to i lterchange airflow between modules.

One would expect that the THC air is relativel:_ contaminant free since it is filtered,

whereas the IMV could have trace contaminar_ts generated in other modules, both

routine contaminants and those released due to accidents.

The air-flow model is based on the continuity equation, the Navier-Stokes

equation, thermal energy equation, and the cmcentration equation together with

the k- e turbulence model equations, for the case of turbulent flow. The k- e model

(Anderson et al., 1984; Whitaker, 1968) uses the kinetic energy of turbulence k, and

its dissipation rate e as the two scales. This introduces two additional transport

equations. In the k - e model, the turbulent viscosity #t also known as the eddy
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Figure 2.1: Sketch of the model cabin.
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viscosityis definedby therelation:

#t = cupk2/e (2.1)

where % is an empirical constant, and p is the density of the fluid.

For a rectangular cabin geometry, the equations of continuity, momentum,

energy and mass for an incompressible flow are as follows. The symbols in the

equations are defined in the nomenclature section at the end of this thesis.

Continuity:

V.u = 0 (2.2)

Momentum:

The momentum equation for the three co-ordinate directions is given below.

x-direction

0(_)
---31-

Ot

op
Ox

o(pu2) O(puv) O(puw)
Ox + 0----_ + Oz - (2.3)

Ou 0 Ov Ou). 0 Ou Ow--- + °(:_v. u + 2u_) + _[u(_ + _ l + _[u(_ + _Z-_)] + pY_

y-direction

O(pv)
Ot

o(o_v) O(pv_) O(pvw)
__+__+__+

Ox Oy Oz

Or,+ 0 Ov Ou). 0 (_v.

(2.4)

0 Ow Ov).
[u(b-_-_ + _ 1+ p.f_

z-direction

0(pw)
Ot

op
Oz

o(puw) O(pv_) o(mo2)
+__+

Ox Oy Oz

0 Ou Ow). 0 .Ow Ov). 0
---+ Uz[u(_ + _ J+ N[ucN + _z 1+ N(_v.

(2.5)

Ow
u + 2u--z-) + vL

CI Z
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Energy:

The energy equation is given below for the sake of completeness. The

Space Station environment is expected to be isothermal for the most part, and

minor temperatures would not affect the flow field much since buoyancy is not an

important factor under micro-gravity.

u 2 0 0"1' 0 _ 0 OT
D (e + P_I + + (k ) +p_ T)= _ (k_-_) _ _(kTz )

Ov Ow) :_(Ou Ov Ow)2-P(_+_+ Oz + Ox+_ + oz +

0_ 2 _ 0_ )2 (Ou+ + +#[2(_x) + 2( )2 + 2(0z + cOy cOx cOz cOx

2.3 Solving the Navier-Stokes equations

(2.6)

The equations were solved in a coupled manner using the Fluid Dynam-

ics Analysis Package (FIDAP Version 7.62)(FIDAP, 1993). A finite element mesh

grid was developed for the two-dimensional and the three-dimensional problems with

specified nodal boundary conditions. An eight-node brick was used as the basic finite

element for the purpose of discretization. The velocity components were approxi-

mated using trilinear interpolation functions within the elements. The pressure was

discretized in a piecewise continuous manner, with the pressure degree of freedom

associated with the element centroid. A segregated solver was used to solve the re-

sulting non-linear equations. The segregated solver decouples the equations for the

purpose of solution, and sequentially solves them, using the results of one equation

in the next, and so on. This increases the CPU time needed, but conserves memory,

and has been found to be very useful for large mesh sizes. A variety of boundary con-

ditions was tried, though for the sake of conciseness, only two cases will be discussed

here. The Convergence criterion required the residuals of the equations (velocity

components and the pressure) to be below 0.0001. Most of the computations were



18

performedon the SGI PowerChallengeArr_, in a parallelmodewith either two

or threeprocessors,availableto usthroughthe NationalCenterfor Supercomput-

ing Applications,Urbana-Champaign.Therul_srequiredvaryingtimesto converge,

approximatelyin the rangeof 60CPUhoursfor each.

2.4 Flow field results

Case 1: Laminar Flow- high flow rate

The geometry has already been described. For this case, we used an IMV

with a duct velocity of 4.8 m/s and a THC wi_ h a velocity of 6.0 m/s. The cabin is

assumed to be isothermal. The ducts leading to the outlet are modeled using free

boundary conditions, i.e. the values of the velocities are allowed to float to satisfy

the Navier-Stokes equations. The no slip boundary condition was invoked at all the

walls. We assume that the flow is laminar, and that it is a steady flow field.

Figures 2.2 - 2.4 illustrate the flow profiles that we obtained. The contour

of the magnitude of the velocities and the velocity vectors themselves are depicted.

We show three horizontal slices of the box, one near the top and bottom, and one

halfway up the cabin to illustrate the variations. The slice near the bottom is mainly

dominated by the exit of the THC duct. Not,. • that the flow leaves at an angle to

the duct due to the blast of air that blows i_ the x-direction. The slice near the

center clearly shows the profile near the inlet and outlet for the IMV ducts. The

flow spreads out throughout the room. The laminar case shows no recirculation cells.

The slice from the top of the cabin shows the :tow entering the cabin, and the cells

formed as the jet curves downward.

Case 2: Turbulent Flow- high flow ral e

Turbulence, in a sense, is still an unsolved problem. The presence of a

length and a time scale much smaller than the physical problem presents a scenario

where the exact solution to equations cannot be obtained. In addition, for room and

cabin flows, it is difficult to predict the onset of turbulence. A statistical approach
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Figure 2.3: Speed Contour and Velocity Vector for the middle slice under laminar

flow conditions for a THC flow of 6.0 ms -1 and an IMV flow of 4.8ms -1. The speed
and velocity are expressed in the units of ms -1
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Figure 2.4: Speed Contour and Velocity Vector for the top slice under laminar flow

conditions for a THC flow of 6.0 ms -1 and an IMV flow of 4.8ms -1. The speed and

velocity are expressed in the units of ms -1.
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is usually used, and the equations are averaged over a time scale that is long com-

pared to that of turbulent motion. The resulting averaged equations then describe

the distribution of the mean velocity, pressure, temperature and the other quanti-

ties of interest. Detailed derivations of the equations can be found in any advanced

book on fluid motion (Anderson et al., 1984). We use the two-equation model,

briefly touched upon earlier. For isothermal flow with no mass transfer, the recom-

mended set of model parameters were used for these empirical constants defined in

the nomenclature section.

c_, = 0.09, ak ---- 1.00, a_ = 1.30, Cl = 1.44, c2 = 1.92 (2.7)

Figures (2.5-2.7) are graphical representations of the turbulent flow simulations.

Case 3: Laminar Flow -Low flow rate

For the same geometry as before, the flow rates were decreased, and the

steady state flow profiles were recalculated for an IMV flow rate of 0.15 m/s and a

THC flow rate of 0.3m/s. All other condition_ were maintained at previous levels.

The profiles are shown in Fig. 2.8-2.10.

Case 4: Turbulent Flow -Low flow rate

The low velocity flow field calculation was repeated for turbulent flow. Fig-

ures 2.11-2.13 show the contours for the profile s that were obtained.

No major differences were noticed in the flow profiles obtained for high and

low velocity duct flows. The patterns of flow essentially remained the same. A more

thorough study of inlet velocities and their eff,_'ct on cabin air flows is in order but

beyond the scope of this work. The turbulen flow profiles closely resemble those

obtained previously in experiments (Son and Barker, 1997) in the Space Station

simulator. The differences can be attributed to the minor differences in the geometry

in the region of the hatches connecting the modules, and the roundedness of their

hatches. The existence of recirculation cells is the significant difference between the
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Figure 2.5: Speed Contour and Velocity %rector for the bottom slice under turbulent
flow conditions for a THC flow of 6.0 ms -1 and an IMV flow of 4.8ms -1. The speed

and velocity are expressed in the units of ms -1.
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Figure 2.6: Speed Contour and Velocity Vector for the middle slice under turbulent

flow conditions for a THC flow of 6.0 ms -1 and an IMV flow of 4.8ms -1. The speed
and velocity are expressed in the units of ms -I.
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Figure 2.7: Speed Contour and Velocity Vector for the top slice under turbulent flow
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Table 2.1: Normal mesh-errors for the velocity components and the pressure equa-
tions.

Degree of Freedom RESIDUE

U

v

w

P

0.72617E-03

0.10399E-02

0.21082E-03

0.39848E-03

laminar and the turbulent profiles. We believe that the actual flow in the Space

Station is mostly turbulent, and the the profiles we obtain are characteristic of low-

velocity turbulence flows.

2.5 Mesh refinement studies

Numerical simulations are of course, subject to errors, and are closely re-

lated to the coarseness of the mesh used in the simulations. One common way of

validating CFD simulation results is to refine the mesh being used and noting that

there was no major change in the solution obtained for the same geometry, initial

and boundary conditions. Tables 2.1 and 2.2 show the error residuals for each of the

four equations, representing the velocities in the three co-ordinate directions and the

pressure. Results are shown for both a normal mesh and for a refined mesh (dou-

ble the number of mesh points). The results indicate that further refinement will

no_ substantially change the overall flow profile. The flow profiles obtained in the

previous sections suggest that a refinement of the mesh near the flow inlets would

improve the accuracy of the solution near the inlets.

2.6 Complex flows

The flow in a cabin under operation is likely to be different from what we

obtain by simulating an empty cabin, as we have done until now. Humans in the

cabin and equipment are likely to cause more turbulence and recirculation cells. A
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Table2.2: Refinedmesh-errorsfor the velocitycomponentsandthe pressureequa-
tions.

Degreeof Freedom RESIDUE
u

v

w

P

0.12671E-02

0.14342E-02

0.10849E-02

0.71476E-03

detailed analysis of complex flows is out of scope of this work, but we attempt to

obtain some preliminary results on what flow fields look like with objects in the

cabin.

A set of simulations were carried out for the geometry shown in Fig. 2.14.

Speed contours for three horizontal slices are shown in Figs. 2.15-2.17. The turbu-

lence in the cabin was found to increase with the presence of an object, with more

dead zones. The number of recirculation cells has increased. The velocities did not

vary too much, due to the low velocity of the air flow.

2.7 Summary and Conclusions

Our objective in studying the air flow inside the cabin was to arrive at a

basic understanding of cabin flows aboard the Space Station, and to obtain a few

sample air flows that could be used as an input to our transport model, developed

in the next Chapter. The flow profiles are very important to the transport model

since most of the mass transfer in the cabin occurs as convective transport, and

the accuracy of the flow field will therefore largely control the accuracy of the final

transport model. Space Station flows are very poorly understood at present, and

considerable further work is needed, both simulation of flows using CFD techniques,

and experimental work which can validate those simulations.
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Chapter 3

Air contaminant dispersion modeling

3.1 Mathematical model

One of the goals of this work was the development of a complete three-

dimensional transport model for the air-borne contaminants. The essential structure

of the model is shown in Figure 3.1. Previous work used either the control-volume

approach, in which the cabin was modeled as a collection of well-mixed reactors

(National Academy of Sciences, 1981), or a space-averaged two-dimensional model

(Skliar and Ramirez, 1997a).

Nazaxoff reports a study of the effects of indoor air pollutants in which the

indoor air was tagged with a non-reactive tracer and the decay of its concentration

was monitored. They also extended this work to the study of flows between rooms

using a combination of remote sensing and computed tomography techniques, which

yields accurate results for the dispersion of air pollutants.

In this section, we present our model o:" the transport process, the discretiza-

tion scheme to convert the partial differential equations to discrete representations,

and discuss our solution scheme. The three-dimensional transport model developed

here essentially extends the two dimensional model of Skliar (1996).

Assuming a constant density of spaceo aft atmosphere and a constant molec-

ular diffusivity, DM, the differential mass balance of the air-borne contaminant

(Bird et al., 1960) with concentration q results in the following fundamental three-
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dimensional convection-diffusion transport model

Oq
O--t+ u. Vq = DMV2q + f (3.1)

where u is the bulk air velocity, and f is the function that describes the capacity

and location of contaminant sources and sinks. In this work, we are assuming that

the contaminant is passive, i.e. it is transported with air at the same velocity in the

field. In addition, we are assuming that the contaminant undergoes no chemical or

physical transformations during its transport.

Equation 3.1 is applicable to both laminar and turbulent flow. However,

in the case of turbulent flow, the velocity vector is extremely random, and so we

resort to using the time averaged equations instead. The idea is to average the

Fickian model over a time interval long enough for the integral of the instantaneous

fluctuations to become zero. For the case of turbulent flow, therefore, we treat both

the flow velocity and the concentration q as stochastic quantities. The transport

equation, for the case of turbulent flow is written as

0_ + _. V_ -- V2D-M-Mg+ ] (3.2)
Ot

where the overbar indicates that they are time-averaged quantities.

The eddy diffusivity, DM, which is tae diffusivity under turbulent condi-

tions, is a function of the flow field and is therefore not uniform throughout the

geometry.

3.2 Computer Implementation of tl:e three Dimensional Model

We solve the model Eqs. 3.1 and 3.2 above using a simple finite differenc-

ing scheme. In this section, we discuss how we discretize the equations, and then

outline the solution technique used to solve the, same equations. Since the flow field

is expected to be turbulent in most cases, this derivation will proceed under that
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assumption,andusingthe eddy diffusivityasthe diffusivity coefficient.If laminar

conditionsare found to prevail,the moleculardiffusivity shouldbe used,which is

independentof the flow field, andthereforeis uniformthroughoutthe cabin.

The diffusivetermsarediscretizedusinga secondcenterdifferencescheme

andappearas

0 _ Oq qn+l,p,r - qn,p,r qn,p,r -- qn--l,p,r (3.3)
-_xL'M-_x = dn+l,p,r Az 2 - dn,p,r Ax 2

00q _ dn,p+ l,r qn,p+ l,r - qn,p,r qn,p,r = qn,p- l,r (3.4)
"Oy Oy Ay 2 - dn,p,r Ay2

CO COq qn,p,r+l - qn,p,r qn,p,r - qn,p,r-1 (3.5)
-_zd_z = dn,p,r+l Az 2 -- dn,p,r Az 2

where Ax, Ay ,Az are discretization steps along coordinates x,y, and z, d is the

discrete analog of the diffusivity and the subscript is used to specify a point on the

spatial mesh {(n,p,r) I n = 1,N,p = 1, P,r = 1,R}. N,P, and R determine the

mesh size used in discretizing the cabin geometry.

The convective terms are discretized using the upwind differencing scheme

in order to eliminate any possible oscillatory effects in the solution. The convec-

tive terms for the East-West, South-North, and Up-Down directions are as follows.

East-West
E W

uOq qn,p,_ - qn,p,_ (3.6)
COX -- ?'Zn'p'r AX '

where
qn,p,r if Un,p,r > 0,

qn-l,p,r if Un,p,r < 0,

W f qn-l,p,r if Un,p, r > 0,

qn,p,r

qn,p,r if Un,p, r < O.

South-North
S N

vgqq _ qn,p,r - qn,p,r (3.7)
COy -- Vn,p,_ A y '
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where

Up-Down

s {qn,p,r =

qn,p,r =

qn,p-l,r if Vn,p, r > 0,

qn,p,r if v_,p,r < 0,

qn,p,r if Vrt,p,r > O,

qn,p-l,r if _Jn,p,r < O.

wOq u Dqn,p,r -- qn,p,r

(9Z Wn'p'r J._Z (3.8)

where

qn,p,r =

°{qn,p,r =

qn,p,r if wa,p,r > 0,

qn,p,r-1 if wn,p,r < 0,

qn,p,r-1 if Wn,p,r > 0,

qn,p,r if W,_,p,r < O.

The application of the center difference approximation of the time derivative yields

the following discrete analog of the three dimensional transport model.

qrn+ l m
n,p,r -- qn,p,r

At

+

[ E I m+l r w Im+l m

E m W

1 lqn,p,rJ _xlqn,p,rj_ + [qn,p,r] _-- [qn,p,r]
Ztn'p'r Un'p'r A X

- -
Vn,p,r [qSp,r]m+l [ N ]m;-1 S m N m[qn,p,rj q- Vn,p, r

Ay Ay

D rn+l [ U ] rn+l D m U m /"4- Wn,p,r [qn'p'r] -_Z Iqn'p'rj -4- Wn,p,r [qn'p'r] -_Z [qn'p'r]

]
[ qm+l __ am+l am+l m+l1 bt n+l,p,r _n,p,r _n,p,r -- qn-l,p,r

2 [_n+l,p,r "_ - dn,p,r Ax 2
171 m m

m qn,p,r -- qn- 1,p,r ]
-'F dn+l,p,r qn+l,p,r - qn,p,r _dn p,r

Az 2 Az2 J

_m+l om+l am+l _ qm+l
1 dn,p+l,r t/n,p+l,r - =n,p,r _n,p,r n,p-l,r
2 Ay 2 -- dn,p,r Ay 2

+ dn,p+ 1,r qnm'p+a'r- qn,mp,r qn,mp,r- qn,mp-i,r ]

,_m+l _m+l -m+l _m+l

1 _/n,p,r+l -- _ln,p,r tln,p,r -- tln,p,r- 1

dn,p,r + l "_-_ -- dn,p,r A z 2
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+ dn,p,r+lqn,mp,r+ 1 - qn,mp,r qnm,p,r - qnm,p,r-1] fm+l
Az 2 - dn,p,r -_ j +, n,p,r (3.9)

where fm+X represents the value of the time dependent source function f evaluated
._ njp,r

at the current time step, At is the time discretization step, and the superscript

m -- 0, 1, 2,... is used to identify an instance t = (m + 1)At for which the solution

of the equation is sought.

3.2.1 Numerical solution of the transport model equations

Because of their poor stability properties, explicit difference methods are

rarely used to solve initial and boundary-value problems in two or more space dimen-

sions. The solution scheme used here is the classic Alternating Direction Implicit

scheme (ADI) (Douglas and Rachford, 1956; Douglas, 1962), which invokes the prop-

erty of operator splitting and converts the problem into a system of three tridiagonal

matrix equations, along lines parallel to the x, y and z co-ordinate directions, which

can be solved using the Thomas Algorithm (Godunov, 1959). Solving the three

tridiagonal equations yields a solution for the concentration at the next time step,

qm+l via the intermediate concentrations (both dummy variables), q* and q**. The

convective operators are discretized using an upwind first order scheme, while the

diffusive terms are discretized using a second order center difference scheme. The

time operator is a simple forward difference term. The error is of O(Ax, Ay, Az, At).

The like terms in (3.9) are collected to obtain the following equations for a

single spatial mesh point (n,p, r):

( Ax r _ r2 At )q* = ( +Ay+Az--_)qm+fm

( Ay r, ** Ay r ,
2 _i )q - _ qm - _--_q

Az r Az r
2 _t )qm+l -- 2 qm- _-_q**

(3.10)
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(3.11)

This systemof equationsis thenrepresented as a single matrix equation in

terms of the State transition matrices, A1 and A2.

where

A1Qm+I = A2Qm +

q_n

Qm = q_

qm

0

0

(3.12)

(3.13)

A1 = {A_} =

(=-_- _) 0 oAt

r -Ay rA_ ( 2 --_) 0

0 _ (=___A_ _)At 2 At

(3.14)

and

0 0

A2=A2 := 0 0

0 0

(Az/2 + Ay + Az - r/At)

-Ay/2

-Az/2

(3.15)

Az, Ay, and Az are finite differenc_ approximations used in the State

Transition matrices representing each of the sI,atial directions, where, for instance,

Az is the approximation of

0 -- 0 0u (3.16)
_x DM O-X OX

The solution to this set of equations for the apl}ropriate initial and boundary condi-

tions discussed in the next section yields the concentration profiles for the cabins.
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3.2.2 Boundary conditions

Boundary conditions may be of the following kinds:

Boundary Condition of the first kind:

This is also known as a Dirichlet condition, and specifies a given concen-

tration along a boundary. This occurs commonly at inlet ducts where the flow is

coming in at a certain concentration of contaminant.

Boundary condition of the second kind:

This is also known as a Neumann condition, and specifies a concentration

derivative normal to the surface of the boundary, A wall, for example is represented

as a Neumann condition with the derivative of the concentration being set to zero.

Boundary condition of the third kind:

Also known as a Robbins condition, this specifies a combination of a concen-

tration and a flux at the boundary, and does not usually occur in cases of contaminant

dispersion, although it occurs commonly in convection diffusion when applied to heat

transfer problems.

Continuity boundary condition:

This is prescribed typically along interfaces, open boundaries, and at ducts

linking cabins, and for no barriers to mass-transfer, specifies that the flux must be

constant across a boundary. If a barrier exists, say, a membrane across which the

cabin air diffuses, a resistance to mass transfer may be used to specify the boundary

condition.

The different boundary conditions are used in this work in the following

cases: (Skliar, 1996; Roache, 1972)

The nature of the boundary must be described mathematically to com-

pletely specify the problem. This involves describing the volume of interest, as a

single volume or as a set of volumes glued to one another, and the appropriate bound-

ary conditions. The boundary condition can be of three main types, the Dirichlet
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boundarycondition,wherethe concentrationat a givenboundaryis specified,the

Neumannboundarycondition,wherethemassflux at theboundaryis fixed,andthe

mixedor Robbinscondition,wherea functionof the flux (the derivative)andthe

concentrationis specified.In physicalterms,the boundariesareencounteredin the

followingcases.

Thewall: This is a no flux Neumannboundarycondition.This alsois the

defaultboundaryconditionfor the model.

Duct In/Out: This wouldhappenin the caseof a windowof somekind,

with significantconvectiveflow in/out. The velocityat that meshpoint is then

specifiedby the freestreamvelocity,and the diffusionis just asbefore.Theseare

inflowand outflowboundariesand the concentrationis etherallowedto float (for

outflowducts)or specifiedasa Dirichletcondition(for inflowducts),asfar the the

meshisconcerned.Thevalueof thefloat isdeterminedbythefree-streamconditions

outsidethe volumeandwill haveto bespecifiedfrom timeto time.

OpenHatch:This is similarto the duct,exceptthat flowsare ignored.

Membranewall: This boundaryis treatedlike an interior point, with the

velocitysetto theflowvelocitydeterminedby the membrane,andthe diffusivity is

changedto thevaluedictatedby themembrane.

Removaldevicewall: This is a speci_l case,and allowsfor a boundaryto

exist within the volume,with a diffusivity differentfrom the rest of the volume,

or canact asa sink, whichthen wouldbe treateda sourceterm with a negative

capacity.

Thesolutionto anypartialdifferentialequation(PDE) candependon the

boundaryconditionsandthe initial condition.,appliedto the PDE. It is therefore,

not surprisingthat the specificationof the colaputationalboundarycondition,be-

sidesaffectingnumericalstability, affectsthe accuracyof the PDE solution in a

significantmanner.Theintermediatevalues,q" and q** are not necessarily approx-

imations to the value at the end of the iterati_,n. As a result, particularly for high
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orderaccuracymethods,theboundaryconditionsfor the intermediatesweepsmust

be obtainedin termsof the boundaryvaluesat t = nk and t = (n + 1)k. For

boundary conditions independent of time (eg. Dirichlet conditions), the conditions

are straightforward(LeVeque, 1985)

q, = q,, = gm+l (3.17)

where gm+l is the specified concentration at the boundary. For Neumann conditions

the relations are:

q* = fl__gm.y+ (1 -- 7A_)( 1 -"/Az)(-_g*2""_' m+l _Tgm)3

q** __g,n + (1 A2,,_p m+l= _ 7_zjt_zg _ gin)

(3.18)

(3.19)

where gm+l is the specified flux boundary condition, and "_--/_ = Ax/2.

The Neumann boundary also requires the calculation of the flux at the

boundary. At the boundary, however, a center difference cannot be used to compute

the first derivative since there are no neighbor mesh points in one of the directions

( say, to the left of a point on the x boundary). This problem is circumvented

by using a reflective boundary condition (where the domain is extended left of the

actual boundary). One-sided differences could also be used. In this work, we use the

reflective boundary condition to model the boundaries.

3.3 Model Testing

We first ran simulations of the contaminant dispersal using cases where we

expected a known pattern of dispersal to see if the model was performing satisfac-

torily. The model was therefore tested for stagnant cabins, and for cabins with air

flow, with two kinds of contaminant sources, puffs, which are instantaneous releases

of contaminant, and continuous streams of contaminant flow.
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Case 1: Stagnant Room - Source in the center.

In the first test case, the velocity vector was assumed to be identically

zero at all the node points. This is a useful te_t case, since we know a priori what

the model should predict: a gradual spread of the contaminant outwards, while

preserving the symmetry of the distribution. A point source was introduced at the

geometric center of the cabin, and the contaminant concentrations were observed for

subsequent time steps. A 31 x 31 x 31 mesh was used to discretize a model cabin

of size 7 x 7 x 7m, and Figure 3.2 shows the contours at grid point slices 1, 10, 15,

and 29 (in the z-direction) for time Steps 3,7,29, and 49. Note that the solution is

symmetric in all directions.

Case 2: Room with air flow - Source in the center.

Having tested a rather rudimentary te_t case, we now considered a case with

a fictitious wind field. A wind field with u = 0.Sin�s, v = 0, w = 0 was used at all the

node points. This wind field again has the advantage that we can expect a certain

pattern in the solution. Again, we use a 31 x 31 x 31 mesh, with two ducts on either

side. Figure 3.3 shows the contours obtained for different time steps. Transport in

the x-direction is mainly via convection, and ([iffusion in the y and z directions is

only molecular. One can observe that the comective transport is much faster than

the molecular transport. Consequently, we may conclude that the accuracy of the

flow field will largely control the accuracy of the transport model.

3.4 Contamination scenarios

We now proceed to test the working cf our model by simulating some test

cases. In this section, we use the wind field that we obtained in the sample cases

(Narayan and Ramirez, 1998b) to observe hov contaminant dispersal occurs. We

consider two separate cases, both of which represent actual Space Station contami-

nant scenarios.

Case 1: Steady-State Contaminw,ion
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Figure 3.2: Contaminant concentration contours for a stagnaht room with a contin-

uous release of contaminant in the center of the cabin. The contours are shown for

4 horizontal slices per time step (left-right, top-down), at levels 0.07,0.7 1, and 1.9m

from the floor of the cabin at time-steps 3,7,19 and 49.
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Figure 3.3: Contaminant concentration Contours for a room with flow, with a uni-

form velocity of 0.5 ms -1 shown at levels 0.07,(_.7,1, and 1.gm from the floor of the

cabin at time-steps 3,11,45 and 99.
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This case attempts to mimic the routine operation of the Space Station

module. For this specific case, we are assuming a release of 20 mg of carbon dioxide

over the first two time steps(of 4.5s each). In addition, we have a steady input

of carbon dioxide in the inlet streams. The cabin has a residual carbon dioxide

concentration of 0.3 volume % for its initial condition. The THC air comes at a

concentration of 0.5 volume % and the IMV with a concentration of 0.71 volume %.

This would be realistic since the THC is treated, and we could assume that one of

the other modules has a great deal of astronaut activity, and thus the high carbon

dioxide level. The simulation was done for about 300 time steps (about 1350 s). By

this time, we observe a steady-state concentration distribution. Figure 3.4 shows the

contamination levels at four different slices in the cabin, at levels 0.067m, 0.67m, hn,

and 1.87m from the floor of the cabin after about 1300 s. The origin, (0,0,0) refers

to the point in the cabin at the left bottom corner in Fig. 2.1. The surface plots of

the slices closer to the middle of the room show similar profiles, and the exits and

the consequent drop in concentration levels of the contaminant are clearly visible.

This is due to the strong blast (relative to the rest of the cabin) of wind removing

the contaminant through convective transport.

Case 2: Sudden Release of Carbon dioxide

Carbon dioxide may be used to extinguish a fire. A large release of carbon

dioxide then would occur over a small time frame, and we wish to monitor how the

contaminant levels gradually decrease. Figures 3.5 and 3.6 show the concentration

levels 90 and 1500 s after the release. The surface plots and contours are shown

at planar slices 0.067m, 0.67m, lm, and 1.87m from the floor of the cabin. During

these 1500 s, more than 70% of the released carbon dioxide has been flushed out from

the room. Figure 3.5 shows the profiles 90 s after the release, which happened near

the bottom left corner of the cabin (0.27m,0.14m,0.17m). In this figure, substantial

amounts of the carbon dioxide are still present near the location of the occurrence,

although the levels drop off near the outlets. In Fig. 3.6, which shows the profiles
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Figure 3.4: Steady State Contamination CO2 profiles for the cabin with an initial

carbon dioxide concentration of 0.3 volume %, _n IMV inlet flow at 0.71 volume %,

and a THC concentration of 0.5 volume %. The concentration profiles are shown at

four levels, 0.067m (level = 1), 0.67m (level = 1 )), lm (level = 15), and 1.87m (level
= 28) above the floor of the cabin.
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1500saftertherelease,weobservethat thecarbondioxideisalmostwell-mixedwith

only aslight bulgeat the locationof the releasein the top slice.This accumulation

of carbondioxidenearthe ceilingisa consequenceof the low flowregionat the top,

andbecauseof the stagnationzonethat existsnearthe ceiling. By this time, it is

theflowprofilewhichlargelydecidesthecontaminationconcentrationprofile,which

is indicativeof the fact that convectivetransport is the dominantmasstransfer

mechanism.Fora sampleaverageflowvelocityof 1.5m/s, themasstransferPeclet

numberis 2 x 105,which impliesthat convectivetransport dominatesmolecular

diffusion.

Noteherethat thereis a significantvariationin the concentrationsacross

the room, whichmight meanthat lumpedmodelsof the cabinwould be grossly

inaccurate.Also, thereare regionsof accumulationin the room. This couldmean

that SMACscouldbelocally violated,eventhoughtheconcentrationaveragedover

the entire cabinmay be belowthe SMAClimit. The flow field is an important

parameterin thewaycontaminantsspreadthroughthecabinandneedsto beclosely

monitored.

3.5 Modeling of cleanup process

Crucial to the Advanced Environmental Monitoring process is the modeling

and monitoring of the contaminant removal processes. Removal processes range from

HEPA filters, molecular sieves, and adsorption packs to the use of the Sabatier and

the Bosch processes for the regeneration of carbon dioxide.

The approach used in this work is that all removal devices can be modeled

in two distinct ways; either as devices that remove a certain percentage of the con-

taminant and leave the rest in the medium, or as devices that remove almost all of

the contaminant leaving only a small residual concentration behind. The air that

passes through the removal device is then assumed to return to the main stream and

re-enter the module. An additional parameter is the amount of contaminant that
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Figure 3.5:CO2 profiles at four different elevations, about 90 seconds after a sud-

den release of carbon dioxide at grid location (4,5,8) with an initial carbon dioxide

concentration of 0.3 volume %, an IMV inlet flow at 0.71 volume %, and a THC

concentration of 0.5 volume %. The concentraiion profiles are shown at four levels,

0.067m (level = 1), 0.67m (level = 10), lm (',evel = 15), and 1.87m (level = 28)
above the floor of the cabin.
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0.3 volume %, an IMV inlet flow at 0.71 volume %, and a THC concentration of 0.5

volume %. The concentration profiles are shown at four levels, 0.067m (level = 1),

0.67m (level = 10), lm (level = 15), and 1.87m (level = 28) above the floor of the
cabin.
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Table3.1: Sampleparametersusedfor the removaldevices
Capacity Boundary-type RemovalEfficiency Name

100 1 (percentage) 0.95 CO2scrubber
50 2 (Dirichlet) 0.0004 adsorber

theremovaldevicecansafelyaccumulatebeforeit stopsfunctioning.

In this research,theremovalof all substancesis monitoredby asubroutine

that calculatesthe flux of eachsubstanceat all theoutlets,monitorstheir removal

basedon the input parameters,andupdatesthe newinlet concentrationboundary

conditions.A samplesimulation,with thesampleparametersofTable3.1wascarried

out usinga cabinwith theremovaldevicesinplace.A sourceof 60mg/L wasemitted

overa 10secondperiod,andtheTHC andIMV inletshadconcentrationsof 0.0015

mg/L and0.002mg/L, respectively.Theconcentrationprofilesafter450sareshown

in Figure3.7.

Thissubroutineis flexibleenoughto modelavarietyofdevices,includingthe Carbon

DioxideRemovalAssembly(CDRA)that ispart of thecurrentbaselinetechnologies

in the Air Revitalization.TheCDRAprototypetested(Barkeret al., 1991)useda

carbondioxideremovalrate that wasa functionof the inlet carbondioxidepartial

pressure,PPco2 and was represented by the following equation:

Removalrate(lb/hr) = 0.1579 • P Pco2(mrnHg) - 0.0348 (3.20)

The equation is valid for carbon dioxide partial pressures between 2.0 and 3.9 mm

Hg, and can be easily included in our removal : ubroutine.

3.6 Summary and Conclusions

In this Chapter, the transport model was developed and implemented for

air contaminant dispersal aboard spacecraft. TILe transport model uses the flow field
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Figure 3.7: Simulation of the cabin concentrations with the removal devices in use.

The parameters of the removal devices is shown in Table 3.1 and are placed at the
IMV and THC outlets. The concentration surfaces are shown at four horizontal

slices in the cabin, at vertical levels 1,10,15, and 29 (grid location in the z-direction
out of a total of 30).
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calculatedusingmethodsdescribedin Chapter2 asan input alongwith the cabin

geometryandthefluid parameters,andpredictsthedispersalof air contaminantsasa

functionoftime. This transportmodelisathree-dimensionalmodel,animprovement

overpreviouslydevelopedlumpedandtwo-dimensionalmodels,which is shownto

beusefulwhentherearewidefluctuationsin the contaminantconcentrationin the

cabinsuchthat localviolationsof theSMAClevelcanoccurevenwhenthe average

acrossthe cabinstaysbelowthe SMAClevel. Convectivetransportwasfoundto

dominatemoleculardiffusion,evidencedby a masstransferPecletnumberaround2

x 105.Thetransportmodelaccountsfor sourcesof thecontaminant,both in the inlet

flowsandfrom insidethecabin,and isalsoextendedto modelthe effectof removal

devicesthat arecommonlyusedin the SpaceStation. The modelis accuratefor

monitoringpurposes,andis alsocomputationally suitablefor real-timeapplication.



Chapter 4

State estimation using Implicit Kalman filtering

4.1 Why estimate the state?

State estimation is necessary while monitoring any physical process because

there are always uncertainties-faults in the process under observation, errors in the

mathematical model that is assumed to adequately describe the given physical pro-

cess, and changes in parameters that can cause real concentrations to be different

from those predicted by the model. The objective of the filtering process is to arrive

at an estimate that is unbiased, i.e. has the smallest error in the least-square sense,

and which gives one an accurate picture of the actual system. The cost of sensors is

high, both in terms of the monetary expense, and on account of weight and electrical

power issues, which necessarily restricts the number of sensors that can be carried

aboard. This gives rise to the issues of placement and selection of sensors, which is

an area of active research (Smith, 1996). The estimation process is very crucial to

the fault detection and diagnosis process since the matrices and calculations used

in fault and diagnosis procedures are used to make inferences about if and where a

fault (contaminant leak) has occurred.

An identification process usually has at least three main ingredients:

• A priori knowledge in the form of a mathematical model about the unknown

system and the noise.

• A measurement system that provides discrete or continuous measurements
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of a subsetof thestate.

• A performancemeasureof the identificationalgorithm.

Thestateestimationprocedurecloselyfollowsthat proposedby Skliarand

Ramirez(SkliarandRamirez,1997b).Thees_Smationproblem,formulatedsimply

is asfollows:Givena stochasticprocessthat representsa dynamicsystem,weare

interestedin knowingthevalueof x(k) for some fixed k, where x(k) is not directly

accessible to us for observation. We have a sequence of measurements that are

causally related to x(k) by means of a measurement system M and measurement

data z(i), and we wish to utilize these data to infer the value of x(k). We denote

the estimate of x(k) by _(k) and define it to be some n-dimensional, vector-valued

function Ck of the measurements, viz.,

:_(klj) = Ck[z(i), i := 1, ...,j] (4.1)

where k refers to the time when the estimation is made, j refers to the time until which

measurements are taken and used, and i is an index that refers to the measurement

signal being used. Crucial to the estimation p ,ocess is the definition and notion of

the estimation error which is defined by the relation

_(klj ) = x(k) - _(klj ) (4.2)

Ideally, _ = 0 and the estimate is e) act. When this is not the case, we

assign a penalty for the incorrect estimate. Th s is done through a penalty or a loss

function L which has the following properties: (Meditch, 1969)

1. The loss function is a scalar-valued function of n variables.

2. L(_ = 0) = 0. There is no penalty if the estimate is exact.

3. L is a non-decreasing function of the distance of the error from the origin

in n-dimensional Euclidean space.
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4. Thelossfunctionissymmetricabouttheoriginin thesamen-dimensional

Euclideanspace.

4.2 Implicit Kalman Filter

One of the classical methods of state estimation is the well established

Kalman filtering algorithm (Kalman, 1960; Kalman and Bucy, 1961). The Kalman

filter, which has many different implementations now, and which is widely used for

the purpose of state estimation for dynamic systems that have random perturbations,

is an unbiased and minimum error variance recursive algorithm to optimally estimate

the unknown state of a dynamic system from noisy data taken at discrete real-

time. In the Kalman filtering paradigm, the uncertainties of the model and the

measurements are represented by additive stochastic white noise.

In addition, the measurements, z(i) and the measurement errors e(i) are

assumed to possess the following properties:

(1) The measurement errors have a zero mean,

= O,

where E is the "expected value operator". A zero mean error is different

from a random error in that a random error may have a non-zero expected

value, which is also known as a bias. Here, we are assuming that our sensors

are not biased in any particular direction.

(2) The measurement error has a constant variance, which does not change with

time or with any other parameter

(3) The errors are additive, i.e,

z(i) = z(i) +
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(4) The measurement errors are uncorrelated, i.e. for two measurement errors,

e(o) and e(p),

cov(e(o), e(p)) = E{[e(o) - E(e(o))][,(p) - E(e(p))]} = 0 for o # p (4.3)

The Implicit Kalman filter is one of the many alternative Kalman filters that

have been developed over the years, which are _heoretically equivalent to the original

formulation, and which have been formulated for various desirable features (Carl-

son, 1990; Chin et al., 1995; Jordan, 1967) including enhanced numerical stability,

computational accuracy, reduced computational requirements or for implementation

using parallel computing (Jover and Kailath, 1986; Morf and Kailath, 1975; Paige

and Saunders, 1977; Roy et al., 1991). Many of these variations are also discussed

in textbooks (Chui and Chen, 1991) dealing with the topic of Kalman filtering. The

Implicit Kalman Filter was shown to be particularly efficient in treating descriptor

systems with sparse transformation matrices, an example of which is the convection-

diffusion equation that forms the core of our mathematical model for air contaminant

dispersion.

If we recast the model equations for th .' transport model developed in Chap-

ter 3 and include the additive noise, the model can be written as a single matrix

equation

where

A1Qm+I = A2Qm +

Qm

fm

0

0

+ 0

0

q_n

qm

qm

Wlm (4.4)

(4.5)
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C(m) representsthe stochasticdisturbancetransition matrix that acts uponWl,

which representsa stochasticdisturbancethat is an uncorrelatedGaussianwhite

sequencewith a zeromeanand

E[w, mW,mv] = Q (4.6)

Q is a diagonal matrix that represents the model noise, and is closely tied to the

uncertainty surrounding the mathematical model for our physical process. A highly

accurate model would have low values for its Q, and one that does not represent the

physical process too accurately would have high values for its Q.

and

and

AI = {A_J} =

(-A_ r2 -_) 0 o

(:b__A_ r) oAt 2 At

o _ (:__A_ r)At 2 At

(4.7)

A2 = A_3 =

0 0 (A_/2 + Ay + Az - r/At)

0 0 -Ay/2

0 0 -Az/2

(4.8)

Zm+l = [0 0 H(m+l)]Qm+l+Vm+l (4.9)

vm+l is an uncorrelated Gaussian white noise sequence that represents the mea-

surement noise with a covariance represented by R. The R matrix is a diagonal

matrix that contains information about the uncertainty surrounding the measure-

ments. Lower values for R indicate more accurate sensors. The estimation of the

contaminant concentration is determined from the sequential solution to the follow-

ing tridiagonal equations:
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A x r ,2 _t )q

(_Ay r
2 At) q**

(_A, r2 _t)qm+l

__ r= ( + Ay + Az - _-_)qm +fm (4.10)

+L1 [z - HlYm+llm]

Ay r ,
-- 2 qm - _-_q + L2[z - Hl:_m+llm ] (4.11)

Az r **
- 2 q_ - :_q + L3[z- H_y_+_I_] (4.12)

where the predicted estimation of the auxiliary variable y = A2Q is given by the

following equation:

[A13]_rm+l[m = A223 £tmim + 0 (4.13)

A 33 0

The superscripts in the matrices A_ 3, A223, and A 33 refer to the row and column

partitions of the A2 State transition matrix.

Note that the Eq. 4.10-4.12 are identi(al in structure to the model equations

in 3.11, the only difference being the addition of the last term, which is the effect of

the filter on the equations.

The modified measurement matrix ]I1 = {Hu} is calculated using the

following equation:

[.11.1  13]A1:=[oo.] ,414)
which is equivalent to solving the following eqt ations:

H13A? 3 = H,

H12A122 32= -H13A1 ,

(4.15)
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H1,A_ 1 = -H12AI 2'.

The Implicit Kalman Gain, a matrix that multiples the estimated error residual is

given by the equation

Lm+l = P_+IImHT[HIPYm+llmH1T + R(rn + 1)] -1 (4.16)

tion

where P_+llm is the predicted error covariance matrix given by the equa-

PYm+ll m =

A13pq A13 T
2 rnlrn 2

+CQC T

A23pq AI3 T
2 rn[m 2

A33pq A13 T
2 ,n[,n 2

A13pq A23 T
2 rnlrn 2

A23pq A23 T
2 rn[rn 2

A33pq A23 T
2 rnlrn 2

A13pq A33 T
2 mlm 2

A23pq A33 T
2 mlm 2

A33pq A33 T
2 rnlrn 2

(4.17)

The actual estimation error covariaflce matrix, PYre+lira+ 1 is then calcu-

lated from the predicted error covariance matrix using the relation

PYm+l[ra+l = [I -- Lrn+lH1]PYm+llrn, (4.1s)

The error covariance matrices are measures of the uncertainty inherent in the com-

puted quantities.

The error covariance in the state, P2+lrm+l which is the uncertainty asso-

ciated with the computed concentration is determined from the equation

Q T
PYre+lira+ 1 = A1Pm+IIm+IA 1 (4.19)

The solution to the last equation is reduced to a sequential solution of the

following six tridiagonal equations:
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A_]rpQ lllAll T rpV 111
t m+llm+lJ _rL1 = t m+llm+lJ

A_ IrpQ 112A22T rpv 112 A ll rpQ IIIA21T
t m+l]m+lJ 1 : t m+lim+lJ -- 1 L m+lim+lJ 'rt-1

A_lfpQ I13A 33T rpv _z3 AnrpQ I12A32 T
t"-m+iim+lJ __I = t m+llm+lJ -- 1 [ m+11m+lJ _"_'1 ,

A22fw Q 122A 22T rpV 122 A21rDQ 111a 21T
t"m+l]m+lJ 'L1 = t m+llm+lJ --" 1 t_'m+llm+l] 'etl --

(4.20)

A211[pQ II2A 22T [A 21 [DQ 112A22TIT
t m+Iim+IJ r_l -- t_l L_m+Iira+lJ "_I J _'

A22[p Q 123A33T rpy ]23 A21[DQ i12 A32 T
1 t m+llm+lJ 1 = L m+l]m+lJ -- 1 [_'m+llm+lJ "etl --

A22rpQ 122A 32T _ A 21rpq I13 A 33 T
1 t m+l[mWlJ "1"1 I t m+llm+lJ 2"_I ,

A33rpQ 133A 33T rpV 133 AS2[pQ 122A32 T
1 L m+llm+lJ "e_l = t m+lim+lJ -- 1 [ m+llm+lJ "e_l --

A32rpQ 123A33 T rA32rpQ 123A33T] T
1 L m+lim+lJ 2"tl --t 1 [ m+lim+lJ _'1 J

rpQ ]33 = pqwhere t m+lirn+lJ m+lirn+l"

We can now formulate the algorithm of the estimation of the contaminant

concentration qm+l based on the measurement data and the transport model.

1. Compute the predicted estimate of the concentration, Ym+l[m by prop-

agating the concentration at the previous time step, qmim according to Eq. 4.13.

2. Successively solve three tridiagonal matrix equations for the modified

measurement matrix H 1 .

3. Solve the tridiagonal model equations with the new perturbation to

obtain the optimal estimate qm+llm+l.

The calculation of the gain Lrn+l of the Implicit Kalman Filter follows the

following algorithm:

1. Calculate P_+llm according to Eq 4.17.

2. Calculate the Implicit Kalman filter gain from Eq. 4.16.

3. Calculate PYm+l[m+l according to Eq. 4.18.
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4. Thefinal stepis to initiate the gaincalculationfor the next time step,

for whichonesequentiallysolvesEq. 4.21.This isby far themosttime consuming

step. The updating stepcanalsobe implementedthroughthe useof square-root

filtering schemes,which canreducethe computationtime, and alsoprovidesome

addedstability to the filter (SkliarandRamirez,1997b).

4.3 Filter Implementation and Testing

A "true" test of the filter can only occur in an experimental setting, with a

physical cabin and measurements. In the absence of that, we tested the filter using

the results of the model itself. We added a random Gaussian noise to the contaminant

concentrations from the model, as we would expect to get in a real setting and then

checked to see if the filter was able to track the contaminant concentrations with

sufficient accuracy.

The filter is a computationally intensive program, and we found that it was

taking around 30 seconds for each time step on a DEC-Alpha Station 250 4/266.

We therefore ran the model and the filter with a 30s time step. We are using a

set of five sensors to estimate the concentration in the whole room. In order to

test the filtering process, we have crowded all of the sensors in one corner of the

cabin, to see how robust the filtering process is. Table 4.1 shows the position of

the sensors. The co-ordinates refer to the location of the sensor grid points within

a rectangular geometry of size 6 x 2 x 2m which used a grid of dimensions 15 x

28 x 30. For the filter to be useful, good estimates of the model uncertainty and

the measurement uncertainty are needed. This estimation is not a trivial process,

and will require among other things, experience in running the filter for specific

systems and conditions. The model uncertainty, Qdiag can be closely tied to the

amount of turbulence in the system and the error in the numerical solution to the

convection-diffusion equation. The measurement uncertainty, Rdiag should reflect

the uncertainty present in each sensor, which is quantifiable by test experiments.
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Table4.1: Sensorlocationandthe associatedmeasurementnoise

Sensor Co-ordinates
1 3,2,3
2 1,1,3
3 2,2,2
4 3,1,2

R

0.001

0.001

0.001

0.0019

5 2,4,3 0.0019
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Figure 4.1: Filter Performance-Tracking an ar )itrary point in the cabin. The real

concentration at point (1,2,3) is given by the s)lid line, and the estimated concen-

tration from the filter is given by the dotted line.
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Figure 4.2: Filter Performance at (10,10,10). The real concentration is given by the

solid line, and the estimated concentration from the filter is given by the dotted line.
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Figure 4.3: Filter Performance-Tracking at Sersor #1, located at (3,2,3). The solid,

dotted, and dashed lines indicate the true corcentration, the measured concentra-

tions, and the optimal estimate of the concentrations using the Implicit Kalman
Filter, respectively.
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Figure 4.4: Filter Performance-Tracking at Sensor #:2, located at (1,1,3). The solid,
dotted, and dashed lines indicate the true concentration, the measured concentra-

tions, and the optimal estimate of the concentrations using the Implicit Kalman
Filter, respectively.
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Thegraphsshowsampleresultsof the contaminantconcentrationestima-

tion for 30time steps.Figures4.1and4.2showthe trackingof twoarbitrary points

in the domain,whileFig. 4.3-4.4showhowthe filter functionsat the sensorloca-

tions in the presenceof measurementnoise.The trackingis fairly accurateand is

mathematicallyconsistent.Theerrorfor pointsin thedomainthat aredistant from

the sensorsis naturallyhigher.Thefilter sligh,ly lagsthe "true" values.That, too,

shouldbeexpected,sincethefilter doesnot "know"aboutnewsourceemissions.

Figure4.5showstheerrorat four differentsensorlocationsas a function

of time. The dashedline, which is the boundof the error is determinedby the

estimationerror covarianceat that location. In this example,wehavechosen3a

asthebound,wherea represents the standard deviation of the expected estimation

error, based on the fact that 99 % of the estimates would fall within this bound. It is

expected that the error stays within the bounds that are indicated by the uncertainty,

which changes from its initial value until it reaches a steady state value. Figure 4.6

shows how the uncertainty varies with time.

4.4 Uncertainty

4.4.1 Modeling uncertainty

The main source of uncertainty in the system being studied is that of the

wind velocities. The flow field is by far the mos_ important parameter in the disper-

sal of the contaminants. In addition, there are t he other usual uncertainties inherent

in the physical modeling of any system, errors in the measurement, and the pres-

ence of faults. There are two reasons why there are uncertainties in the flow field.

Firstly, turbulence is stochastic in nature, and the flow field obtained, by definition,

is approximate since it is a time averaged quant.ty. Graphs showing the actual mea-

sured velocities indicate this quite clearly (Zhang et al., 1992; White, 1974). The

other reason is that numerical procedures essentially yield approximate results. The
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Figure 4.5: Filtering results showing the noisy measurements and the filtered es-

timates; the ordinate represents the measurement noise (dotted line) and the es-

timation error (solid line) as a function of time. The dashed line represents the

error bounds, and is equal to 3a, where a represents the standard deviation of the

expected estimation error
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Figure 4.6: Filter uncertainty - Covariance of _lhe estimation error at Sensor #3 as
a function of time.
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residualnormsof the errorsarea measureof how approximate the numbers are.

The objective in studying the uncertainty is to structure the uncertainty in order to

produce a measure of how reliable our estimate of the state is and how robust the

procedure is. It is crucial that the diagnosis be accurate, that no fault go undetected;

at the same time, any false alarms must be avoided since that would mean the loss

of precious crew time. Most fault detection procedures will ultimately detect any

given fault; the objective is to detect the fault as early as possible using a proce-

dure that is known not to yield too many (or any) false alarms. The structuring of

the uncertainty therefore, is a prerequisite to the fine tuning of the fault detection

algorithm.

An analysis of the uncertainty would require an experimental set-up, and

data in order to evaluate the model results. In the absence of that, one could

artificially change some parameters, and then evaluate the performance of the filter

and the model. We next consider the effect of a change in the inlet velocity on the

model results.

4.4.2 Effect of randomness in inlet velocity

The dispersion model assumes the existence of a steady state flow profile.

Here, we examine the effects of a variation in the inlet velocity on the estimation

error.

For the turbulent flow field simulated in Chapter 2, the THC inlet velocity

is specified to be 0.5 m/s. Now, assume that the velocity decreases by 15 %.

The steady-state Navier-Stokes equations are next solved for the new bound-

ary conditions. A study of the actual velocities shows that some internal velocities

decrease by more than 15 %, depending on the location, not a surprising result since

the Navier-Stokes equations are non-linear, and the turbulent energy itself causes

substantial noise in the system.

The new velocities are used in conjunction with the mathematical model
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Table4.2: Sensorlocation and the associated measurement noise
Sensor Co-ordinates

0 10 10 10

1 8223

2 357

3 666

4 4 11 22

R

0.0001

0.001

0.0001

0.0023

0.019

5 8 14 18 0.0019

to generate the "true" concentrations for the given concentration initial and bound-

ary conditions. The filter, however, is not updated with these velocities, since our

objective is to evaluate its performance when conditions change unknown to the

model. Monitoring the inlet flow velocity would take care this change and update

the model, a procedure that is discussed in the next section. In the first case, we use

the uncertainties from Table 4.2.

The tracking at Sensor locations 0 aad 4 is shown in Figs. 4.7 and 4.8.

The filter uncertainties in this case balance the model uncertainties, and the filter

consistently over-predicts the concentrations at both locations. The main reason

for this is the fact that the reduced inlet velgcities causes a reduced flux of the

contaminant into the chamber, since the inlet concentrations remains unchanged.

This 15 % reduction in the flux persists throughout the duration of the experiment,

and the filter, constrained by the mass balance over predicts the concentration.

The residual error curves for Sensors _} and 1, shown in Figs. 4.9 and 4.10

show the error that is negative (with the estim_ted concentrations being lower than

the actual) and increases with time. The error _ increase at different rates, and the

rates depend on the local velocity and location with respect to the ducts.

The Euclidean norm of the predictior, error, shown in Fig. 4.11 rises dra-

matically, and clearly exceeds the error bounds, and the fault in the system is quite

apparent.

This case dealt with the situation in w lich the model and sensor uncertain-
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Figure 4.7: Tracking of the contaminant concentration at sensor location #0 with a

15 % reduction in the inlet velocity. The filtered estimate (dashed line) over-predicts

the real concentration (solid line). The measurements are shown by the dotted line.
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Figure 4.8: Tracking at location 4 with a 15 _ reduction in the inlet velocity. The

filtered estimate (dashed line) over-predicts th,, real concentration (solid line). The

measurements are shown by the dotted line.
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Figure 4.10: Residual error at sensor location 1 with a 15 % reduction in the inlet

velocity. The magnitude of the residual (estimation) error increases with time.
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Figure 4.11: The Euclidean norm of the erroJ with a 15 % reduction in the inlet

velocity is shown increasing with time. The estimation error clearly exceeds the
error bounds (dashed line), indicating the pres _nce of a fault.
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Table 4.3: Sensorlocationand the associatedmeasurementnoise-very low sensor
uncertainty

Sensor Co-ordinates R
0 10 10 10 0.000001

1 8 2 23 0.00001

2 3 5 7 0.000001

3 6 6 6 0.000023

4 4 11 22 0.00019

5 8 14 18 0.000019

ties were weighted equally. If we expect extensive noise in the system, for example,

if a 15 % change in the inlet velocity were common, one would then have to give the

measurements a higher certainty level in order to obtain better tracking performance.

For this situation, we repeat the previous case, but with the lower mea-

surement uncertainties listed in Table 4.3. The sensor uncertainties, Rdiag have been

reduced to about one hundredth of their usual values. The results are shown graph-

ically in Figs. 4.12 through 4.16. One can clearly observe that the tracking using

these very low uncertainties is an improved over the previous case. In this scenario,

the model is relatively unimportant, and the measurements become paramount. This

all comes at a cost, of course. With these very low sensor uncertainties the ability

to filter out the noise is impaired.

4.4.3 Double Filter

Since one of the major sources of uncertainty and error in this model is the

velocity, a variant of the Implicit Kalman filter such as a double filter could be used

for improved performance. The double filter is a Kalman filter, but the difference

between the measured and model velocity is also used to update the final state of

the system. It is expected that this will increase the sensitivity of the filter and

consequently increase accuracy. The filter will therefore have a set of concentration

sensors, measurements from which are used to update the right side of the state
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Figure 4.12: Tracking at sensor location 0 with a 15 % reduction in the inlet velocity

for very low measurement uncertainties. The filter (dashed line) now tracks the
measurements (dotted line) very closely.
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Figure 4.13: Tracking at sensor location 4 with a 15 % reduction in the inlet velocity

for very low measurement uncertainties. The filter (dashed line) still over-predicts

the concentration, but the tracking is slightly better than in Fig. 4.8.
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Figure 4.14: Residual error at sensor location 0 with a 15 % reduction in the inlet

velocity for very low measurement uncertainties. The presence of the residual error

indicates the presence of a fault, but the error in this case is lower in magnitude than
with higher sensor uncertainties.
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Figure 4.15: Residual error at sensor location 1 with a 15 % reduction in the inlet

velocity for very low measurement uncertainties. The presence of the residual error

indicates the presence of a fault, but the error in this case is lower in magnitude than

with higher sensor uncertainties.
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Figure 4.16: Euclidean norm of the error with a 15 % reduction in the inlet velocity

for very low measurement uncertainties. The presence of a fault in the system is

evidenced by the fact that the residual error solid line) clearly exceeds the error
bounds (dashed line).
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estimationequations,anda setof velocity sensors, which will perturb the left-hand

side of the state estimation equations. The new state estimation equations, will

therefore be of the form,

(-__z _ 1/At)qm+l

-- (ax/2 + c_y + c_z - 1/At)qm + fm + Ll[z - Hl_)m+]lm ]

= --ay/2qrn -- 1/Atq* + L2[z - Hl_)m+llm], (4.21)

--0_ z

2 qrn - 1/Atq** + L3[z - Hlflm+llm],

where az, ay, and az represent the filtered left hand side terms. The time step used

in updating the velocity filter could be much larger than the time step used in the

rest of the filter, in order to minimize the computations needed.

Implementation of this double filter was out of scope for this work, but can

be easily implemented and tested.

4.5 Summary and Conclusions

A state estimation procedure was implemented using the Implicit Kalman

Filter, which provides accurate estimates of the contaminant concentrations at all

points in the cabin, using the transport model developed in Chapter 3 in conjunc-

tion with a measurement system. The filter is an effective tool for rejecting sensor

noise, and provides smooth estimates of the state of the system in real time. The

performance of the filter in the presence of a major disturbance was studied, which

showed that a proper choice of the model and measurement noise covariance matrices

can lead to good tracking behavior in the presence of noise. Parameter estimation,

and its use in combination with the state estimation procedure could lead to further

improvements in overall estimation performance.



Chapter 5

Fault detection in distributed parameter systems

5.1 Introduction

In this chapter, we discuss the use of the Implicit Kalman Filter in the

implementation of a Fault Detection algorithm. Fault detection is the procedure

which alerts the user to a malfunction in the system. Fault detection is the first step

in the comprehensive Fault Detection and Isola:ion (FDI) problem. Basseville, in his

discussion of current methods in FDI (Basseviile, 1997), mentions that FDI is split

into two steps; the generation of residuals, which are ideally zero under fault-free

conditions, minimally sensitive to noises and disturbances, while being maximally

sensitive to faults, and residual evaluation, w lich concerns the design of decision

rules based on these residuals. A detailed account of fault detection algorithms can

be found elsewhere (Basseville and Nikiforov, 1993). Methods of fault detection are

classified into methods that are Model based ,_r those that are Statistically based.

Statistical methods are the only options whe:l detailed model information is not

available and consists of continuously examining the statistical properties of the

measurement data, and noting any substantb_l deviations from a pre-determined

threshold band. Model based methods, on the _ther hand, use the knowledge about

the system and infer unmeasurable characteristi cs of the system from the measurable

using this knowledge.

The fault detection algorithm consists, of a sensor fault test procedure and
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a processfault detectionprocedure.The sensorfault testingprocedureformsthe

innershellof thealgorithm,sincethesensorreadingswill haveto bevalidatedbefore

further processing.Then, the readingsareevaluatedfor a possibleprocessfault.

Under normalconditions,both the testswouldbe negative,and the filter would

continueontoits next timestep. Forthepurposesof air contaminantmonitoringin

spacecraft,weenvisiontwo kindsof faults; Instrument or sensor faults and Process

faults. A Sensor fault, as its name suggests, implies that one or more of the sensors

is not functioning. The fault could be in the form of a total malfunction, where the

sensor readings are totally random with no physical basis, or could be manifest as a

bias in some direction.

A process fault may be present as an unknown source problem, or as a

violation of a safety requirement. While we expect that faults will be infrequent, a

fault detection procedure is crucial since it is under conditions of a fault that the

utility of the system is realized.

5.2 Sensor Fault

One method for detecting sensor faults is that of hardware redundancy

(Emami-Nacini et al., 1986), in which sensors are used at each location, and an

agreement between all three sensor readings is necessary for that sensor reading

to be accepted as valid. If one of the three sensors shows a deviation statistically

significant from the other two, then that sensor is considered to be faulty. Hardware

redundancy is costly because of its need for triple the amount of hardware especially

in a space environment, where weight are power requirements are concerns. Hardware

redundancy, though might become feasible for on-board applications if the cost and

weight of the sensors drop enough to offset the cost of the extra computational

requirement due to analytical redundancy.

Another approach is called analytical redundancy. Analytical (or func-

tional) redundancy is a model-based fault detection procedure where a single set of
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measurementsisusedin conjunctionwithamo:ielandadetectionalgorithminorder

to detectand distinguishbetweenfaults. Here,the setof sensorsis separatedinto

two. In ourexample,Sensors1-3(Table4.1)_repart of Filter bank 1; Sensors4-6

part of Filter bank2, andthecompletesetof sensors1-6form part of Filter Bank0.

The threefilters are run simultaneously,onewith the completeset of sensors,and

onewith eachindividualsetof sensors.Threeresidualscharacterizethesebanksof

sensors,

ro : Zm+l - Hlqr a t_llrn+l

1 _ H11 ^1
rl : Zrn+l qm _llrnTl

2 2^2
r2 ---- Zm+ 1 -- HI qm_t_ltrn+l

(5.1)

(5.2)

(5.3)

where the superscripts refer to the appropriate sensor banks. When all three banks

show a similar residual, the sensor system is working normally. When two of the

banks deviate, then one of the sensors in that bank is malfunctioning, and the other

bank alone should be used in the filtering process. Mathematically, this amounts to

checking if

llrol12 =If rl 112----I r2 112 (5.4)

within bounds of error at each time step. Ilrl12 ::epresents the Euclidean norm of the

quantity, which represents the distance of the _ector from the origin.

Figure 5.1 shows the residuals calculi_ted for three different banks in the

absence of a fault, while Fig. 5.2 shows them in the presence of a fault in Bank 0

and Bank 1. In Fig. 5.1, the residuals of the (stimation error in all three banks is

around 0.015 throughout the time period undel consideration. In Fig. 5.2, however,

while Bank 2 maintains its residual of 0.015, Banks 0 and 1 have residuals around

1.5, which are significantly higher. Bank 2 is therefore functioning normally, and its
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Figure 5.1: Residuals of the three Filter banks under normal operation.

all three banks posses estimation errors that are similar in magnitude.

Note that
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estimates alone should be used to monitor the contaminants until the faulty sensor

is identified and rectified.

This method requires high computational power but does not need an in-

terruption of the operation once a fault is detected, since a smooth transition to the

functioning bank of sensors can be made. Alternatively, one can just monitor each

individual sensor for its residual and determine a malfunction. Figure 5.3 shows the

residual error for three sample sensors in the case of a sensor fault. It is quite ap-

parent from the three sensor error graphs that Sensor 2 is malfunctioning, and that

the others are functioning normally. The working of the filter can be seen. Since

the filter does not "know" that a fault has occurred, the filter is starting to respond,

and even the non-faulty sensors are showing errors that are almost exceeding the

bounds.

This procedure required less computational power, but the filtering process

after the detection of the fault becomes complicated, because of the process of taking

out the malfunctioning sensor's readings from the existing filter.

5.3 Unknown source

The problem of an unknown source co_lld be something as minor as higher

than expected carbon dioxide levels because of increased activity in the cabin or

could be a major leak. An unknown source will cause the model to vary consid-

erably from the measurements and cause large estimation errors. Monitoring the

estimation error is the key to identifying the pro sence of unknown source substances

and contaminants. The way this is detected is through having safe bounds for the

residual error, and if the residual error exceeds the bounds, then the diagnosis for

an unknown source is initiated. Figure 5.4 shews a sample result where the error

bound is exceeded owing to an unknown source. The case of an unknown source is

discussed in greater detail in the next section, in a simulated Space Station scenario.
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the huge change in the estimation error in the faulty banks (0 and 1) from normal
operation (Bank 2).
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Figure 5.3: Residual error in three sample sens( rs with a fault in Sensor #2. Sensor

#2 has residuals that are clearly outside the error bounds, indicative of a sensor

fault. The fault in Sensor #2 is beginning to affect the other sensors as well.
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5.4 Operation fault

An operation fault is a rather serious situation that arises when the space

operation itself is in identifiable danger because the space atmosphere is seriously

contaminated. One way of recognizing a fault in the system would be by studying

the state of the system, which in this case would be the concentrations of each

contaminant at every grid point. A fault can be posed using the norms of these data,

the way it is commonly done in linear system _heory. For purposes of contaminant

monitoring aboard the Space Station, a fault can occur both in the 12 and the 11

sense. A fault in the 11 sense occurs for the case of substances that cannot exceed a

certain SMAC, and which is an acute toxic. For such substances, a fault occurs if

IIl (q) (5,5)

where qc is the appropriate SMAC for that comaminant, and ll and 12 are the 1 and

2 norms of the concentration vector. A fault in the 12 sense occurs when the process

•fault affects the health of the cabin in an overall sense. For example, a fault in the

oxygen system occurs if

II 12(q) I1<

and a fault in the carbon dioxide system occur_ if

II12(q) I1>

Situations could vary from high CO. levels that have exceeded the long

term or short term SMACS, or with toxic releases detected at levels that are known

to be harmful to humans aboard. The situatSon could further be subdivided into

either a local or a global fault, and the detection algorithm is able to distinguish

among these.
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5.5 Scenarios

5.5.1 CO2 operation

We will discuss the utility of the monitoring system in two specific scenarios,

both relating to the CO2 levels in the Space Station (Narayan and Ramirez, 1998a).

According to NASA standards, CO2 must be present in the cabin at levels between

0.3 - 0.80 volume %. The highest level it can reach is 1.3 volume %, and when that

level is exceeded, the mission is called off.

In the first scenario, we consider a case in which there is a leak of carbon

dioxide from a carbon dioxide storage system. This means that CO2 is constantly

being added to the system and is likely to accumulate until some action is taken.

Since this is unknown to the model, a good test of the filter would be to see how

quickly this is detected. In this circumstance, it would be useful to monitor the

levels and raise an alarm if the emergency levels are exceeded. Figure 5.5 shows

how this situation leads to an emergency situation, when no mitigating actions are

undertaken. The CO2 concentration violates the SMAC at time, t = 320 s.

In the second scenario, we simulate a fire in one section of the cabin, which

is extinguished by a CO2 extinguisher. (Halon cannot be used aboard the Space

Station.) The CO2 level consequently will immediately rise in the vicinity of the

fire (both due to combustion product and due to the use of the extinguisher), and

we wish to monitor how the level declines, and when the cabin becomes habitable

again. This sort of a simulation would be invaluable in cases where there are multiple

modules, and activity can be curtailed in the module under scrutiny until the levels

are safe again. The release occurs at time t = 20 s, and continues for 40 s. Figure

5.6 shows how the concentration of CO2 changes with time for Sensor location #0.

The SMAC is locally violated at t = 70 s, and the cabin is safe for habitation again

at t = 200 s. The utility of the three-dimensional model lies in the fact that even

local violations of safety standards can be detected, at both sensor and non-sensor
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Figure 5.5: Average concentrations in the cabir in the presence of a continuous leak

of CO2. The dotted-dashed line indicates the (rror bounds outside which a fault is

declared, and the dashed line is the SMAC lev_ 1 for CO2.
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locationsevenwhenthe averageconcentrationof thecontaminantin the cabin lies

belowthe SMAC.

5.5.2 Other contaminants

The monitoring of acute toxics would follow a slightly different procedure.

For one, they are not normally present in the cabin atmosphere, so there are no sensor

readings. Secondly, there are many specific toxics, each with different SMACS, and

different sensors. Also, the tolerance for these substances will be tighter, so the

procedure needs to be extra-sensitive.

For this purpose, the best procedure would be to have a backup filter ready,

and initialized, which can be activated as soon as any of the sensors register a reading

for the toxic. The procedure can then access a central database for the SMAC for

the substance, and begin to operate on the filter measurements. Since it is likely to

be an unknown source, a diagnosis will have to be performed at the very beginning

itself. A sample result is shown in Fig. 5.7. Sensor readings are identically zero,

and the residual and the filter both show a zero reading. A source is introduced at

time -- 100 s , unknown to the filter. The filter responds almost immediately, and

the fault is quite apparent within 10 s of the release.

5.6 Summary and Conclusions

Fault detection algorithms have been implemented using the error residu-

als from the Implicit Kalman filter. The algorithm is able to detect and distinguish

between sensor and process faults. The principle of Analytical redundancy using par-

allel banks of filters is used to detect sensor faults, while process faults are detected

when the residual estimation error from the filter exceeds pre-determined bounds.

The filter is able to detect faults very quickly, which would be critical during space

missions.
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Figure 5.6: Local concentration at a sample location in the cabin. The solid line

indicated the true concentration at the Sensor location, and the dotted line, almost

indistinguishable from the solid line is the filtered estimate of the concentration using

the Implicit Kalman Filter
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Chapter 6

Source identification - solving the inverse problem

6.1 Introduction

The final portion of this work is devoted to the inverse problem - that of

identifying the unknown source that is causing a fault that has been detected by the

detection algorithm. A rich body of literature exists in the realm of inverse problems

(Alifanov, 1994; Kurpisz and Nowak, 1995), although much of the work has remained

theoretical (Kirsch, 1996) with a few practical solutions. Part of the reason for this

is the relative intractability of inverse problems, beyond simple cases with restrictive

assumptions.

One characteristic of an inverse problem is the unique manner in which

data errors affect the error in the solution. The classic example given by Hadamard

(Hadamard, 1923) was that of finding a soluti( n u to the Laplace equation

02u(z,y) 02_(x,y)
Au(x,y) .- Oz2 + Oy2 = Oin_X[O,_) (6.1)

that satisfies the conditions

u(x_ O) I(z), _u(x, o) = a(x), x _ _,

where f and g are given functions. The unique solution for

(6.2)

f(_) = o
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and

1
g(x) = -sin(nx)

n

is given by

1

u(x, y) = -_-_sin(nx)sinh(ny), x E _, y > O.

With this solution, we therefore have

(6.3)

1
sup{If(x) + g(x)l} = - O,n

n
(6.4)

but then, for the error,

1

s_pl_(_, y)l = -_sinh(ny) _ 0o, n _ _ (6.5)

for all y > 0. So, even though the error in the data tends to zero, the error

in the solution u tends to infinity.

Thus, a zero error in data tends to result in an infinite error in the solution

6.2 Literature survey of solution methods

Skliar (Skliar, 1996) used a one-shot optimization solution to estimate the

location and capacity of a source, once it was detected. While this a relatively

quick operation, and computationally non-intensive, it is prone to very high errors,

especially in the presence of measurement noise.

A study very similar in scope to ours was carried out (Richards et al., 1997a;

Richards et al., 1997b) for application to a fire detection problem. They proposed

a method for detecting, locating and sizing accidental fires in warehouses, based

on the solution to an inverse heat transfer problem. They use a forward solution

database, and minimize the least square error between estimated and measured times

of activation of sensors that have been installed on the ceiling of the warehouses. On
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closerexamination,however,their problemturnsout to besimplersincetheyassume

a quiescentroomwith no air motion,and that the heat transferoccursprimarily

througha buoyantplumeof combustiongasesthat risesto the ceiling. Theirs is a

one-shotsolutionmechanism.

The estimationof multipleunknownsourcesis further complicated,and

not manysolutionsexist. Cheng-HungHuangand Jan-YueWu (Huangand Wu,

1994)solvedthe two-dimensionalinverseproblemfor two heatsources,but then,

they assumedthe boundaryat whichthe sour:eswereacting,thereforeconverting

the problemto an inverseboundaryproblem.

Masstransportinverseproblemsarecommonin geologywheremeasure-

mentsat theearth'ssurfaceareusedto inferpropertiesof processesoccurringdeep

insidethe earth. A generalmodelhasbeendeveloped(TalentiandTonani, 1995)

for gas-emittinggeologicalsystems,wherethe bulk gasvelocity at the surfaceis

usedto locatethe strengthand locationof t_e gassource. Another application

for inverseproblemsthat dealt with masstr_msferwasdevelopedby Australian

researchers(Newsamand Enting,1988;Enting and Newsam,1990;Enting, 1993),

whoconsideredtheproblemofestimatingsurfazesourcesof carbondioxideandother

tracecontaminantsfromsurfaceconcentration]ata. Theyuseda three-dimensional

diffusionmodelfor their transportprocessanc:analyticallysolvedthe equationto

accountfor theinfluenceof variousfactorsontheability to invertmeasurementdata

to obtainsourceestimations.

An elegantmathematicalformulationfor the determinationof the source

term wasdeveloped(NandaandDas,1996)for specialcasesof theheatconduction

equation,whichhoweverassumesaspecificmathematicalformof thesourcefunction.

6.2.1 Extended Implicit Kalman Filter

Once a fault is detected, the next step is the identification of the source of

the fault, namely its location and capacity. The 2-D model of Skliar used a one-shot
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sourceidentification,whichis susceptibleto higherrors,especiallyin a systemwith

somuchnoise(Skliar, 1996).Sourceidentificationproblemsof this type fall into the

realmof inverseproblems(Alifanov,1994).An inverseproblem, simply defined,is

onewherethecauseisdiscoveredfromaknownresult.Theyarisein electrodynamics,

geophysics,astrophysicsandmanyother fields(KurpiszandNowak,1995).Inverse

problemsareill-posed,whichwouldmeanthat smalldataerrorscanleadto serious

errors. Many fault diagnosismethodshavebeendevelopedoverthe years,mostof

them applyingto lumpedsystems.In general,they canbe classified into pattern

recognition (e.g. fault dictionaries), logic-based/information flow graphs (i.e., fault

trees, signed directed graphs), and estimation/analytical redundancy methods. The

reader is referred to one of many survey articles that address these issues (Basseville,

1988; Frank, 1990; Gertler, 1991; Korbicz et al., 1991). While many tested techniques

exist for lumped systems, distributed systems prove harder to solve because of the

indirect relationship between the measurements and the model variables, and due to

the large size of the model matrices.

A multi step identification is proposed here, and the source identification

will carried out over the time range between the time that a fault is suspected and

the time that it is finally isolated. During the diagnostic process, the main filter will

continue to run, but with a larger time step. At the end of the diagnostic process,

the detected source term will be incorporated into the main mathematical model.

The Implicit Kahnan Filter, developed in Chapter 4, can be extended in

order to estimate the unknown source. Extended Kalman filters are modifications

to the Kalman filter (Halme and Seikainaho, 1986; Himmelblau, 1986) which can

then be used to estimate both the state and parameters of systems. This is done

through augmenting the state by adding the unknown source vector, fu to the state.

Using a vector representation for the unknown source allows us to generalize the

formulation to include unknown sources that are distributed spatially and multiple

unknown sources.
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The new augmented state is now

o :I /00,
where Qm, the augmented state is given by Equation 4.5, and fu, the unknown

source vector of dimension n is given by the equation

fu

0

0

0

0

(6.7)

Here, fui represents the capacity of a single unknown source. The vector, fu

can be modified to handle a single source distributed spatially, or multiple sources.

In addition, we assume that the source term is relatively unchanging, and

that it satisfies the equation

dfu
d--i-= 0 + W,,m (6.8)

where Wum is the uncertainty associated with .he unknown source.

Integrating and discretizing the equati on, we obtain the following equation

for the description of the new state.

fum+l = rum hi- kmwum (6.9)

where km is a matrix reflecting the integration time step. The noise in the unknown
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sourceis characterizedby its covariance,Sin,whichis a user-definedconstantthat

dependson howmuchthe unknownsourcecapacitycanvary. High valuesfor Sm

reflecta high uncertaintyin the unknownsourcecapacity,andwill result in a filter

that respondsquicklyto theresidualerrors,whereaslowvaluesfor Smreflectafairly

constantunknownsourcecapacityandwill result in a filter that respondsslowerto

the residualerrors,but onethat will providea smoothersolutionfor the unknown

sourceestimation.

Thestateequations,oncethe unknownsourceis includednowread

A ay'_ a t21 "_m+l = A2 Qm +  [Wm]nt- Cm km

0 Wum

(6.10)

where

and

tl a

(-_- _) 0 0 o

_r) 0 0

0 _ (-_- _)oAt At

0 0 0 W

(6.11)

A2 a

0 0 (Ax/2 + Ay + Az- r/At) W

0 0 -Ay/2 0

0 0 -A_/2 0

0 0 0 W

(6.12)

W is an n x n diagonal matrix, where n is the number of grid points used for the
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discretization,andhasthe structure,

0

0

W ____

"°.

0

0

0

1

0

(6.13)

°°

0

The matrix is extremely sparse, with all zeros except for source location, where there

is a unit term. This unit term picks off the source capacity scalar term on expansion

to yield Eq. 6.9. For multiple sources or single sources that are distributed spatially,

there will be as many non-zero terms as there are sources, placed at the appropriate

grid points.

The measurement matrix remains unchanged since we have no measure-

ments that have a direct bearing on the unknown source, but the matrix has to be

augmented.

[

zm+l= [ Hi(re+l) 0 Q_n+l+vm+l (6.14)

The filter changes to account for the new state and the estimation algorithm

consists of an Implicit and an explicit part, the Implicit part used in the estimation

of the state, and a parallel explicit portion usec in the estimation of the strength of

the unknown source. The gain terms serve to rl ultiply the residual errors generated

in order to update the state estimation for the ]ext time step.
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Filter (Implicit):

Ax r ,
2 At )q

( Ay r. **
2 At )q

(_A.. r
2 At )qrn+l

r= ( + Ay + Az - _-_)qm + fm+ rum +

LI[z - Hlym+Itm]

Ay r ,
-- 2 qm - _-_q + L2[z - Hl_'rn+llrn]

Az r **

-- 2 qm - _-_q + L3[z - H,:gm+llrn]

(6.15)

Filter(Explicit):

fum+l ---- fum -[" L4[z -- HlYm+l[m] (6.16)

The predicted estimated value for the auxiliary variable ya is given by the

following equation

^a ^a

Ym+llm = qm[m + (6.17)
W 0

where ya is the new augmented estimate and is a column vector of size 4n.

The augmented Implicit Kalman Gain matrix is a 4n by m matrix, with

four partitions (one for each co-ordinate direction and one for the unknown source)

and has the structure

Lm+l a= [ L T L T L T L T ]T

and is obtained from the equation

(6.18)

La+l = p2+l]maHTarH apy H Ta -11 [ 1 m+l[m 1 + R(m + 1)] (6.19)
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pY
m+l

{%

m

Al3pq AI3 T. AI3Dq A23 T
2 m[m,"_2 "7- 2 J" mJm"'_'2

+PUlm + CQC T

A23pq A13 T A23Dq A23 T
2 mIm'_2 2 +mlmZL2

A33pq A13 T A33pq A23 T
2 mlmZ'X2 2 mlrn_'_2

PUlm + SQC T 0

A13Dq A33 T
2 _mlm_2 PUlm

(6.20)

+ CQS T

_k23pq A33 T
* 2 mlm_-_2 0

k33pq A33 T
2 mIm_'x2 0

0 PUlm + SQS T

PYre÷lira m the augmented predicted error covariance matrix, and is of

dimension 4n by 4n. PUTm is the uncertainty matrix associated with the unknown

source, and in general is an n by n diagonal matrix, with the uncertainty due to each

unknown source location as the diagonal elements, though it reduces to a sparse

matrix with just one diagonal element, for a fault caused by an emission at one

spatial location. Pqlm is the covariance of the estimated error, and defined by Eq.

4.21. C and Q represent the stochastic model disturbance transition matrix and the

model covariance matrix, respectively. The superscripts in the A2 matrix refer to

the appropriate partitions of the A2 a matrix defined earlier.

The gain matrix partitions, L2 and La remain unchanged from the simple

implicit filter, and only the L1 partition changes, along with the introduction of the

new gain partition for the unknown source, L4 The gain matrix partition, L1 now

becomes a function of the uncertainty term of r_heunknown source, PUlm , which is

then used in the correction term for the first Implicit Kalman Filter equation in Eq.

4.13.

Example:

For a system with six sensors and on_ unknown source, which is the most

commonly expected fault, the gain matrix partition for the unknown source term

has the structure



111

( 0

0

L4 = 14(_) (6.21)

0

where i refers to the location of the unknown source in the cabin. 14(i) is a row vector

of dimension m, and is evaluated by simplifying Eq. 6.19 for one unknown source.

In general, L4 has as many non-zero rows as there are unknown sources.

14(i) =

(P_nlm + sqc) [ h11(13

hll(1)

h11(2)

hll(3)

hll(4)

hll(5)

h11(6)

h11(2) h11(3) h11(4) hll(5) hll(6) ] ×

(P_n[m-[-sqc) [ hll(1)hii(2)h11(3)h11(4)h11(5)h11(6) ] -_ 6'22)

R1 0 0 0 0

0 R2 0 0 0

0 0 R3 0 0

0 0 0 R4 0

0 0 0 0 R5

0 0 0 0 0

-1

0

0

0

0

0

R6

The lower case symbols, p, s, q, and c represent the scalar terms for the uncertainty
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associatedwith theunknownsource,thetransformationfactorrepresentingtheinte-

grationterm in the unknownsourceterms,andthemodeluncertaintyfor that grid

location.

The measurementterm for the grid point wherethe unknownsourceis

locatedfor sensors. is hll(s). The computation therefore x ields 14(i), which is a row

vector of dimension 6, since we have six sensors in this case. Each of these six gain

terms multiplies the appropriate sensor residual from z - Hly , which is then used

to update our estimate for the unknown source location via Eq. 6.16.

The gain term, in turn is used to propagate the uncertainty for the next

time step, which is governed by the equation

and

pyam+l]m+ 1 : [I- a a yaLm+IH1]P re+lira (6.23)

ya AaDQ A T a
P m+l[rn+l = _XlJ" m+l[rn+12_l , (6.24)

6.2.2 Initial guesses through sensitivity matrices

The Extended Implicit filter, like all K alman filters requires an initial guess

for rum, which is not a trivial problem. While the filter performs well in filtering

out noise, and adjusting for model errors, its performance in estimating an unknown

source depends crucially on a good initial guess for the location of the unknown

source emission.

For the purpose of this derivation, w,; assume that there is only a single

localized source term that is causing the fault. The solution can be extended to

multiple and distributed sources, but it would i_e more complicated since the single

source will be broken down into a combination of linearly independent single sources.

In this work, we use pre-calculated sensitivity coefficients for the purpose.
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Sensitivitycoefficientshavebeenwidelyusedinestimatingsolutionsto inverseprob-

lems,especiallyin areasof heat conduction,geology,and tomography(Alifanov,

1994).Somedetailedanalysisof sensitivitycoefficientsandtheir propertiesand use

are alsoavailable(Becket al., 1985;Kurpisz and Nowak,1995). The sensitivity

coefficientcanbedefinedas
0q

Z = 0--_u (6.25)

where fu represents the source term. The sensitivity coefficient term represents the

sensitivity of the concentration q at each mesh point with respect to the release of

a source at every mesh point. Z is calculated by solving the basic model equation,

Eq. (3.1). While Z is defined over the entire domain, the only points of interest

will be the sensor locations since those are only points about which we have direct

information about the concentration that we can use in the event of a fault. Z is

therefore partitioned into a usable and non-usable part,

Z=[Zsensors Znon--senso,'s] (6.26)

This pre-calculated sensitivity matrix can be computed for different times,

in order to provide a window of time over which the fault diagnosis can be conducted,

depending on how soon the fault is detected.

The first step, therefore, is to calculate Z. In order to do this, we multiply

Eq. 3.1 throughout by ao-_-_,which leads to the equation

0fu -_- + u. Vq = DMV2q + fu (6.27)

Since fu is independent of the co-ordinate axes, we can rewrite Eq. 6.27 as

0 0q

ot Of_----+u-V _uu =DMV2 _ +_u (6.28)

Replacing Z for _fu from the definition for the sensitivity coefficient, we
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get thedirectwell-posedproblemequation

0Z
0--t- + u. VZ = DMV2Z + I (6.29)

subject to the appropriate boundary and initial conditions. The identity matrix, I

essentially is a unit source that is sequentially placed at every grid location in the

cabin in order to measure its effect on all the other grid locations. The boundary

conditions and the initial conditions will also have to be divided throughout by

to obtain the initial and boundary conditions for the sensitivity problem. The Z

matrix is then partitioned to obtain Zsensors. Since the structure of the equation

is unchanged from the original model equation, the same algorithms and numerical

techniques can be used in computing the sensitivity matrix. For each time step, the

computation of the sensitivity matrix takes about 180 CPU minutes on the DEC-

Alpha 500 AU, and therefore, the computations have to be performed off- line and

before the time that the diagnosis can take place.

The solution to Eq. 6.29, Z(t), is a fcnction of time, where the time refers

to the time elapsed since the fault occurred. For the purpose of using the Zsensor s

partition in calculating an initial guess for the capacity and location of an unknown

source, we use

Zcritical -_ Zsensor." lt=ta¢t_t (6.30)

where tdetect refers to the time when the fault is detected. This yields a Zcritical matrix

of dimensions n x m, where n is the number oJ grid points, and m is the number of

sensors. In other words, the Zc_itical matrix coatains the response observed at each

sensor location for a unit perturbation at every location in the cabin. In the event of

a fault, this response is used in conjunction with the observed measurement response

in order to estimate the perturbation that caw ed the fault.

The solution proposed here consists of two parts; a first off-line part that in-
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volvedpre-calculatingsensitivitymatrices,andwhichisa computationallyintensive

process;and a final real-timecomputationallynon-intensiveportion that actually

computesafirst guessfor the locationandthecapacityof theunknownsourceemis-

sion.

Thestrategyof themethodis asfollows:

• Theill-posedproblemis madewell-posedby makingassumptionsabout the

problemin the areasof ill-posedness,in this casethe unknownsourceterm

• The well-poseddirectproblemis solvedfor this assumedvalue(s).

• Themeasuredquantitiesarenotedfor the ill-posedproblemusingthesensor

system

• Thecalculatedvaluesfor theassumedproblemarecomparedwith the mea-

suredvaluesfrom the sensorsystem,andthe assumedinput data aremodi-

fied to ensurea matchingof thesetwo quantities•Althoughthis methodis

likely to yield a correctsolution,the natureof an ill-posedproblemcould

meanthat therearemultiplesolutions,with the methodbeingableto iden-

tify only oneof them.

Oncethe sensitivitymatrix hasbeencalculated,wenowdemonstratehow

it is usedin thefault diagnosisprocess•

In theeventof afault beingdiagnosed,anerrorm-tupleis generatedusing

the predictionerrorsfrom theImplicit KalmanFilter.

e

el

e2

e3

ern-1

ern

(6.31)
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whereel, e2, era-1 and em represent the prediction errors for Sensors 1,2,m-1 and m,

and represent the error between the projected estimate and the measurement signal,

ei = zi - Yim+ilm (6.32)

Next, the capacity of the unknown source is calculated, sequentially assum-

ing that the emission occurred at each location in the cabin,

Zi
Cap i = -- (6.33)

ei

This calculation results in n projected capacity m-tuples, with the assump-

tion that the source is in each of n locations, where n refers to the number of grid

points being used. The algorithm being used for this estimation (Fig. 6.1) is given

below.

(1) Calculate capacities using Eq. 6.33.

(2) Scale capacities within each m-tuple using the maximum and minimum ca-

pacities within the m-tuple.

(3) Compute the standard deviation of the calculated capacities for each m-

tuple, for both of the scaled versions.

(4) Pick the point with the least standard teviation. If the same point is picked

using both the minimum and maximum scalings, that point is likely to be

the source location.

(5) If minimum and maximum scalings yi?ld different locations, use the loca-

tion which yields the lower standard d,:viation as the starting guess for the

location of the unknown source.

(6) The initial guess for the capacity is calculated from Step 1.
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( Sensor system

I Diagnosis initiated by 1Fault Detection System

- Estimate capacities foreach assumed location

Scale capacities using max and raincapacities in each m-tuple

Pick m-tuple with theleast standard deviation

( out0utto1Extended Filter

-_Precalculated Z ij )

Figure 6.1: Sensitivity analysis algorithm that yields a guess for the location and

capacity of an unknown source
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Source strength
0

1

5O

100

Table 6.1: Measurements

Measurement

0.3000001

0.3005528

0.3276336

0.3552671

after 1 time step

The final estimate is based on the principle that for the correct assumption

of the source, the m-tuple of the projected capacities would show the minimum

standard deviation, and would match the previously generated m-tuple of sensitivity

coefficients for the location, to a multiplicative real constant.

This is an area of work that is amenable to treatment using Artificial In-

telligence or Knowledge Based systems, where the algorithm is trained to pick up

patterns and suggest intelligent solutions based on learned past experience.

6.2.3 Sensitivity experiments

Tables 6.1 through 6.5 are the concentration measurements at Sensor lo-

cation #6 (8,14,18) for a unit source release at location (8,15,12). This location

happens to be at a sensor location closest to this source, and consequently has a

high response. The data are shown to indicate how the sensitivity indices helps

scaling.

The experiment was repeated for a se _sor location farther from the source

emission site, location #3 at (3,5,7). As exp_:cted, the sensitivity coefficients are

smaller in magnitude. Tables 6.6 through 6.10 show the concentration measurements

Table 6.2: Measurement

Source strength Measurement
0

1

5O

51

100

0.3000004

0.3013975

0.3698579

0.3712551

0.4397156

at Sensor location #6 after 2 time steps
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Table6.3:Measurementat Sensorlocation#6 after 10time steps
Source strength Measurement
0

1

5O

51

100

0.3000708

0.3147669

1.034878

1.049574

1.769685

Table 6.4:

Source strength
0

1

50

51

100

Measurement at Sensor location #6 aher 100 time steps
Measurement

0.2533103

0.2858888

1.882236

1.914815

3.511162

Table 6.5:

Source strength
0

1

5O

51

100

1000

Measurement at Sensor location #6 a_er 300 time steps
Measurement

0.121

0.1617357

2.115451

2.155323

4.1O9O37

39.99361
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Table6.6: Measurements
Source strength Measurement

0

1

50

51

100

0.2999996

0.2999996

0.2999996

0.2999996

0.2999996

at #3 after 1 time step

at (3,5,7) for different times.

One interesting result is that the source is not detectable by this sensor

during the first two time steps, and even at 10 times steps, the effect is very slight.

The distance between the source emission location and the sensor location

is efficiently captured in the sensitivity coefficient, which is computed earlier. The

use of the sensitivity matrix in estimating the detectability of a fault is discussed

later.

6.2.4 Sensitivity analysis-Results

In a real setting, the sensitivity analysis would be tested by introducing

a fault, taking sensor readings, and checking to see if the sensitivity analysis will

estimate the source correctly from the readings. In the absence of an experimental

setting, we introduce the unknown fault, run the model, and use the model calculated

concentrations at sensor locations as sensor readings. In order to simulate a real

physical setting, we also add a Gaussian nois_ to the sensor readings to generate

pseudo-experimental values for testing the Sensitivity analysis.

For our test case, we first pre-calculate the sensitivity matrix for the sensor

Table 6.7: Measurement

Source strength
0

1

5O

51

100

Measurement

0.2999778

0.2999778

0.2999778

0.2999778

0.2999778

at Sensor lo(ation #3 after 2 time steps
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Table6.8:Measurementat Sensorlocation#3 after 10timesteps
Source strength Measurement

0

1

5O

51

100

0.2826567

0.2826571

0.2826755

0.2826759

0.2826943

Table 6.9: Measurement at Sensor location #3 after 100 time steps

Source strength Measurement
0

1

50

51

100

0.1181842

0.1196233

0.1901395

0.1915785

0.2620947

Table 6.10: Measurement at Sensor location #3 after 300 time steps

Source strength Measurement
0

1

50

51

100

0.044009563

0.048030302

0.2450462

0.2490669

0.4460829



122

Table 6.11: Sensor location and the a:_sociated measurement noise

Sensor Co-ordinates

1 10 10 10

2 8223

R

0.0001

0.001

3 3 5 7 0.0001

4 6 6 6 0.0023

5 4 11 22 0.019

6 8 14 18 0.0019

array shown in Table 6.11. The base-line concentrations are taken to be the steady

state concentration field for an initial CO2 concentration of 0.6 volume %.

A source of strength 500 mg/m 3 is then introduced into the model, acting

at location (8,6,5), and the pseudo-measurements that are generated from the model

are used for the sensitivity analysis. A pseudo-random vector with six elements with

a bound of 5 % of the measurement was generated and added to each measurement

in order to mimic a sensor system with 5 % measurement noise.

The sensitivity analysis reports location (8,6,6) as the one with the least

standard deviation (a = 23.67), and the capacities as calculated by each of the

sensors are reported in Table 6.12, the mean of which will serve as our initial guess

for the Extended Implicit Kalman Filter.

While the sensitivity analysis' initial estimate is quite satisfactory for the

purpose of the filter, we also note that the m_.xt highest standard deviation (_r --

200.86) was reported for the correct location (8,6,5), whose guess capacities are

reported in Table 6.13. One observes that Sensors 1-4 have excellent estimates for

the capacity, but the correct location is not reported by the sensitivity analysis

since Sensors 5 and 6 report capacities that im:rease the standard deviation of that

particular m-tuple.

Eq. 6.29 yields Zsensors that can be e_ aluated for different times. This can

provide a window of time over which the fault di agnosis can be conducted, depending
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Table6.12:Estimatedcapacitiesfor assumedsourceat (8,6,6)

Sensor Capacities(mg/m3)
1 158.2
2 140.7
3 154.7
4 158.6
5 103.8
6 115.3

Table6.13:Estimatedcapacitiesfor assumedsourceat (8,6,5)

Sensor Capacities(mg/m3)
1 501.9
2 5!2.5
3 512.5
4 512.5
5 105.5
6 137.4
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on how soon the fault is detected. In our exaraples, we have only used Zcritical , and

this could cause large errors if the fault were not accurately detected. For cases where

one can expect a substantial delay in the detection of a fault, it would be prudent to

minimize the standard deviation of the capacities, evaluated over a period of time,

and using say, Zt=l, Zt=lo, and Zt=50, which would provide added robustness to the

analysis.

6.2.5 Iteration procedure for Extended Implicit Kalman filter

As we observed in the previous section, the sensitivity analysis can some-

times pick a point in the vicinity of the actual source, instead of the actual point

itself. The presence of turbulence in the cabin air, and general measurement noise

can increase the distance of the actual solution from the first guess. In order to refine

our solution, we use the property of the Impicit Kalman Filter being an optimal

estimator and run the filter for the initial guess and determine the squared prediction

error. The final solution is reached when the point under consideration has the least

squared error when compared with its six nearest neighbors.

The algorithm for this location sear_:h is shown in Fig. 6.2 and has the

following steps.

(1) Choose one of B's spatial neighboring points (grope), which has not been

previously visited as the assumed location for the unknown source.

(2) For this location, and the original estim _te for the capacity, run the Extended

Filter and obtain a new squared predic:ion error, and an estimated capacity

for that location.

(3) Repeat Steps 1 and 2 until all neighbor:i not previously considered have been

covered.

(4) Compare the Squared prediction error, and for the next approximation,

choose the point with the least SPE.
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I Input of initial guess 1
(location and capacity)

from Sensitivity Analysis

Run Extended Filter for 1"_ Initial Guess location

I Determine Squared 1Estimation error

RUn Extended Filter for alleighbors to initial location J
/

IfDetermine Estimation error

or all neighboring locations J

No

Update guess location to the point 1
with the least Squared error

Successful

Diagnosis

Figure 6.2: Extended Kalman Filter procedure for estimating unknown source
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Table 6.14: SPE for neighbor points for a conver$ed solution

Co-ordinates of neighbor points SPE

7,6,9 64.557

7,5,9 293.19

7,7,9 597.72

6,6,9 9761.09

8,6,9 40655.4

7,6,8 1581.80

7,6,10 3070.07

(5) Repeat Steps 1 through 4 until a minimum is obtained.

6.3 Results

In the first test case, a source of strength 500 mg/m 3 is introduced at

(7,6,9), with an initial guess of 400 mg/m 3 for the capacity at location (7,6,9) from

the sensitivity analysis. The Extended Filter converges rapidly to the final solution

(Fig. 6.4), and the SPE is only 64.557. While the solution appears to be acceptable

on inspection, our algorithm requires that the predicted errors be examined for its

neighbors. Accordingly, we run the filter for all the neighbors to (7,6,9), and confirm

from Table 6.14 that the estimate is indeed the best, given the measurement data.

In the next test case, a source of strength 1500 mg/m 3 was applied at loca-

tion (1'- .11,9), and the measurements generated were used as inputs to the sensitivity

analysis algorithm. For this test case, the sensitivity analysis points to a source lo-

cation at (12,10,8), and a capacity of 1150 mg/m 3. The filter does not converge for

this location, and so we try the neighbors.

Based on the squared error results in Table 6.15, we shift our focus to

(12,10,9) since it has least error and rerun the filter for its neighbors.

In two iterations, we are able to pinpoint the correct location and source

capacity in the presence of noise. Figure 6.8 shows how the squared prediction error

converges in three iterations to its final minimum value.
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I

V
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Figure 6.3: Comparing the squared estimation error across nearest-neighbors

Table 6.15: SPE for neighbor points for a conver6ed solution-iteration 1

Co-ordinates of neighbor points SPE
13 10 8 10545.7

11 10 8 7719.28

12 11 8 1.384 X 106

12 9 8 554869.0

12 10 7 552.204

12 10 9 157.859
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Figure 6.4: The estimation of a constant source (unknown to the model) of 500

mg/m 3 by the Extended Implicit Kalman Filte ", with an initial guess of 400 mg/m 3.

Table 6.16: SPE for neighbor points for _, converged solution-iteration 2

Co-ordinates of neighbor points sum-squared error
12 11 9 72.6206

12 9 9 429.040

12 10 8 233.676

12 10 10 195.053

11 10 9 10458.9

13 10 9 10158.0
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Figure 6.5: Unknown source capacity estimation - The first of a series of three

iterations needed for the Extended IKF to converge to its final solution. Note that

because of the wrong guess for the unknown source, the filter (wavy line) under-

predicts the actual strength of the source (straight line).
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Figure 6.6: Unknown source capacity estimation- The second in a series of three

iterations needed for the Extended IKF to converge to its final solution. Note that

the estimation is better in this case than it is for Iteration 1, but the filter (wavy

line) still slightly under-predicts the actual str_ ngth of the source (straight line).
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Figure 6.7: Unknown source capacity estimation- The third and final Extended

IKF iteration results showing the estimated (wavy line) and correct unknown source

(straight line) capacities for the correct guess for the unknown source location.
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Figure 6.8: The squared prediction error varying with successive iterations until it
converges to its minimum value
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If for the samecase,i.e., for a sourceof strength1500mg/m3 introduced

at (12,11,9),an initial guessof 1400mg/m3 for the capacityfrom the sensitivity

analysisis used,the ExtendedFilter convergesrapidly to the final solution (Fig.

6.9), and theSPE is only 22.95.The quality of the initial guess,therefore,is very

crucial to the performanceof the filter in termsof a quickconvergenceto the final

solution.

The ExtendedFilter is only asgoodasthe modeland the sensorsystem

are. If all the sensorsarecrowdedin oneareaof the cabin,faults in other regions

cangoundetected.

As anexample,considera fault at location(13,10,20).A constantsource

of strength500mg/m3is appliedovera time of 300time steps,andthe sensitivity

analysiswasusedto estimatethe locationand capacityfor the unknownsource.

The guesslocationwasa significantdistanceawayfrom the correct location. The

filter wasthen run on thesemeasurements,assumingthe correct locationas the

guesslocationwith an initial guessof 400mg/m3. Fig. 6.10showsthe tracking

for this case,and it indicatesthat the responseof the filter hasbeentoo slow,

and eventhoughthe filter is starting to approachthe final solution, the solution

doesnot convergewithin the desireddurationof time. It is thereforecrucial to be

awareof 'dead-zones'whichareoutsidethedomainofobservabilityandconsequently,

detectability.

6.3.1 Varying functions

The Extended Filter can be applied even to varying sources. If the sources

are varying very quickly, then our assumption is violated, and therefore the solution is

likely to be oscillatory and posses a high residual error. Figure 6.11 is an example of a

varying source that was tracked by the filter.The filter exhibits oscillatory behaviour

because the unknown source function is changing rapidly and because it operates

with no knowledge about the nature of this unknown source function.
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Figure 6.9: Unknown source capacity estimation- A very good first guess can lead

to the Extended IKF rapidly converging to the correct solution.
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Figure 6.10: Unknown source capacity estimation when the fault is outside the active

observability range
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Figure 6.11: Varying source capacity estimation. The Extended Filter is able to

diagnose rapidly varying functions, though wit 1 some overshoot and undershoot.
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In another test case, a source function that varies more slowly is used.

Figure 6.12 shows the input and estimated source functions. The overshoot and un-

dershoot is unavoidable since the filter has no a priori knowledge about the function.

If there were any information about the nature of the source function; for

example, if a cylinder had sprung a leak, and the escape of contaminant was governed

by a certain equation, Eq. 6.9 could be modified to reflect that information, and the

filter would be modified accordingly. In the absence of any information, the current

assumption that the source remains constant or slowly varies is found to produce

satisfactory results.

6.4 Sensitivity analysis-maps

The calculation of the sensitivity coefficients, although time consuming is

crucial to obtaining a good initial guess for the location and capacity of the unknown

source. In addition, it also serves as a useful tool in determining the observability,

and consequently the fault detectability, of the system.

The system under study presents some unique features with respect to its

observability and controllability. The usual methods of determining observability

and controllability (Ramirez, 1994) fail here. In the strict sense, if the state of the

system is defined to be the concentrations at each mesh point, and if the controls

involve varying the inlet and outlet velocities and their concentrations, this system

is neither controllable nor observable. This is true for many distributed-parameter

systems, especially of the reaction-diffusion parabolic type because of the way a

perturbation propagates through the system, and for systems where the noise can

be substantial. The sensitivity matrix contains useful information about the speed

with which a perturbation travels through the system, and can be used to plot zones

of observability.

Visualization of the zones would be critical in fault detection and diagno-

sis, especially for real-time applications, so that the operator can easily ascertain the
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Figure 6.12: Varying source capacity estimat on. The Extended Filter can track

varying unknown sources, provided that the sources lie in the region of observability.
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certainty of the diagnosis. The zone is visualized through contours of equal sensi-

tivity coefficients. Grid points that are along a constant sensitivity coefficient have

equal observability and detectability. The sensor uncertainties can then be used to

determine the lower limit of the sensitivity coefficient that can be detected. Grid

points that have Z values below the threshold cannot be detected, and lie outside

the contoured zones.

Figures (6.13-6.14) show these zones for two sample slices across the cabin.

The observable zones lie within the region bounded by the contours. The overlap

zone of the six sensors is clearly visible. Experiments also show that faults occurring

outside the zone are difficult or impossible to diagnose accurately, though an accurate

estimation of unknown sources in this zone is sometimes possible when the sensor

uncertainties are very small compared to the model uncertainty (accurate sensors).

The observability contours can also serve as an excellent tool for sensor selection and

placement because the observability contours for different sensor configurations can

be visualized in order to achieve maximum coverage of the module.

6.5 Summary and Conclusions

In this Chapter, a method for tackling a specific kind of inverse problem

was developed. Inverse problems are usually ill-posed, posses no unique solutions,

and small data errors can cause very large errors in the estimated solution to the

problem. Most inverse problems tackled in the literature are boundary-value inverse

problems, and sometimes assume a certain mathematical functional form for the

function that is to be estimated. The inverse problem that arises out of the attempt

to estimate the capacity and location of an unknown source provides the added

complication that it is not a boundary-value problem, and that fact that there is

little or no information about the nature of the source. Our solution technique

consists of a combination of two commonly used techniques, sensitivity analysis, and

Kalman filtering, which provides a very effective tool for estimating the location and
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Figure 6.13: Observability and detectability co 1tours for slice at grid height 15 (lm
above the floor of the cabin). The region withilL the contours is the observable zone.
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Figure 6.14: Observability and detectability contours for slice at grid h('ighT 25 (l.Tm

above the floor of the cabin). The observable zone lies within the conlours.
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capacity of the unknown sources. The two methods individually would be ineffective

since sensitivity analysis does not respond very well to noisy data, and Kalman

filtering is too computationally intensive to use without a good first guess for the

source location. The combination of the two methods should be further investigated

for its properties, and could possibly be extended to many applications that involve

distributed parameter systems.



Chapter 7

Concluding remarks

7.1 Original contributions

The focusof this workwasto comeupwith implementablealgorithmsfor

usein Spacemissions.Thisresearchhasshownthat advancedcontroltechniquescan

be readilymodifiedfor usefor thisreal-timeapplication.Specifically,wehaveshown

that thedetailedmodelingofthedispersionof air contaminants,their monitoringand

detectioncanbeaccomplishedwith reasonablecomputationalpower.Everyattempt

hasbeenmadeto tailor the workto NASAspecifications(TechnologyDevelopment

Requirements,1996).

Amongthe originalcontributionsof this workare:

• Provingtheinadequacyof lumpedsystemsfor air contaminantmonitoring,

andthe limitationsof two-dimensionalmodels.

• UsingCFDtechniquesfor modelingtheflowaboardtheSpaceStation,hith-

ertonot attempted

• Developmentof the ExtendedImplicit Filter, and using it in combination

with Sensitivityanalysisfor joint stateand parameterestimation.

• Theuseof sensitivitymapsin identifyingdeadzones,andobservable/detectable

zonesaboardtheSpaceStation.
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• Overall,providinga frameworkfor accurateand efficientair contaminant

monitoringusingalgorithmsand methodssuitedfor real-timeimplementa-

tion, andincludingsensorplacementdecisions.

7.2 Possible applications

Thisresearchcanbeusedasa startingpoint for implementingfuture gen-

erationair contaminantmonitoringsystemsfor the SpaceStationandfor longrange

Spacemissions.Someof thespecifictasksthat thisresearchcanbeusedfor include:

• Designof habitationgeometryand for(.'edflowsourcesand sinks. This re-

searchcanbe usedto identifystagnationzonesin the cabin,andto design

betterventilationsystemsto maximizecrewsafetyandcomfort.

• Sensorselectionandplacementissues-Thesensitivitycoefficientshavebeen

shownto be an effectivemeasureof the observabilityand detectabilityof

faultsaboardthe spacecraft.The visu_dizationof the sensitivitycoefficient

providesaneasytool for facilitatingsensorselectionin orderto ensurethat

all partsof the cabinareadequatelycoveredby the measurementsystem.

• Analysisof proposedresponsesto eme:genciesaboardthe spacecraft.The

algorithmsdevelopedherecanbe usedto simulatepossibleaccidents,and

studytheeffectof theremedialmeasureson thespacecraftatmosphere.For

example,onecouldstudy howlong it would take for a toxic leak in one

moduleto spreadto anothermodule,and how long it would take for a

moduleto behabitableafter arelease( ccurredand theremovaldevicesare

activated. In addition,proposedremeJiationmeasuresfor manydifferent

kinds of accidentscanbe analyzedto ascertaintheir relative merits and

demerits.

• Analysisand designof fire extinguishiientsystems.Theeffectof fires,the

transportofcombustionproducts,and_heair flowpatternsin the likelihood
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of the air supplybeingcut off canbestudiedfor a varietyof conditions.

• Designof automatedand semi-automatedcontrolsystems,which usethe

measurementsystemandmodelinputsto providefor operationsthat donot

needhumanintervention.

7.3 Directions for future research

ComputationalFluid Dynamics(CFD)hasnot beenadequatelyutilized in

Spacestation environmentalcontrol applications.CFD couldproveto be a very

powerfultool in the designof Spacestationmodulesfor crewedmissions.A detailed

studyof theseflowsis thereforein order.Thenextstepneedsto beanexperimental

validationof our resultsunderboth atmosphericandmicro-gravityconditions.The

validationneedsto occurin two specificareas-oneis to studyroomair flows,using

the cabin if possible,and observinghow muchnoiseis usuallypresentin the mea-

surements,and in notingthe performanceof the filter itself. Tuningthe gainsvia

sensorandmodeluncertaintiesisanotherareaof workthat needsscrutiny.Simula-

tionshaveshownthat aproperchoiceof theseparameterswill affectfilter gains,and

theconsequentperformanceof the filter. TheImplicit KalmanFilter andExtended

Filter couldboth beoptimizedto improveperformance.Alternativeformulationsof

thefilter whichdonot requirethe inversionof matriceswouldreducethenumberof

operationsneededper time step.
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Nomenclature

= State Transition Matrix (Left Hand Side)

= State Transition Matrix (Right Hand Side)

= Discrete representation of the spatial operator for the State

Transition Matrices in each of the co-ordinate directions

= Zero-mean white Gaussian processes

= Dimensionless empirical constants used in the

k - e turbulence model

= Stochastic model disturbance transition matrix

= Discrete analog of the mass or eddy diffusivity (m2s -1)

= Mass Diffusivity (m28 -1)

= Eddy Diffusivity (m2s -1)

Error m-tuple used in sensitivity analysis

= Contaminant source capacity (kgm-3s -1)

= Unknown contaminant source capacity (kgm-3 s- 1)

= Body force per unit mas_ acting on fluid N/m

= Elements in the measurement matrix, H

= Measurement matrix

= Identity matrix

= Kinetic energy of turbult;nce (used in the k - e model)

= Constant of integration tor the unknown source capacity

= Loss function

= Implicit Kalman Gain

= Pressure of fluid Nm -2

= Predicted error covariam:e matrix

= Estimation error covariance matrix

= Covariance matrix of the state
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q

q

q

Qm

r

R

S

t

T

u

u, v_ w

Wl

W

x(k)

5_

X, y, Z

Z

Subscripts

n, p, r

Superscripts

E

IV

= Concentration of Contaminant (kgm -3) (volume %)

= Discrete analog of contaminant concentration

(kgm -3) or (volume %)

= Volumetric heat flux addition/removal to the fluid jm-3s -1

= Covariance matrix (diagonal matrix) of the model noise

= Concentration vector

= Row unity matrix

= Covariance matrix (diagonal matrix) of the measurement noise

= Covariance matrix for the unknown source capacity noise

= time (s)

= Fluid temperature (K)

= Velocity vector

= Velocity components in the co-ordinate directions (ms -1)

= Stochastic model noise

= Location(s) of the unknown source(s) used in fault diagnosis

= State vector

= Estimate of State

-- Estimation Error

= Co-ordinate directions or positions (m)

= Measurement signal

= Sensitivity matrix

= Mesh indices in the coordinate directions

= Augmented quantities, augmented to include unknown

source(s) in the model

= East

= West
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N

S

U

D

Greek Symbols

_x _C_y _O_z

A

pt

cl,k

p

_Yk_ 0"_

= North

= South

= Up

----Down

= State transition matrices used in the double filter

-- discretization steps in the spatial directions (ADI method)

= Dissipation rate of the turbulence (used in the k - e model)

= Second viscosity coefficient (m2s -1)

= Molecular Viscosity coefficient (m2s -1)

= Eddy Viscosity coefficient (m2s -1)

= Error Functional

= Density of fluid (kgm -3)

= dimensionless empirical constants used in the turbulence model


